Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2020 | Story Nitha Ramnath


Lunchtime learning webinar series on Interdisciplinarity in Action

Mastering a musical instrument, such as the piano, requires the simultaneous integration of a multimodal, sensory system and motor information with multimodal, sensory feedback mechanisms that continuously monitor the performance. Performing intricate movements requires complex, sensory-motor programming of finger and hand movements, which can result in a reorganisation of the brain regarding functional and structural changes of existing and the establishment of new connections. Neuronal networks involved in music processing are adaptable and fast-changing. When motor skills are simplified to the most important action, it consists of nerve impulses sent to the muscles.

In this webinar, Dr Frelét de Villiers discusses the interdisciplinarity between the two fields of music and neuroscience. Promising preliminary data has been reported for applications of transcranial direct stimulation (tDCS) of the motor cortex, ranging from stroke rehabilitation to cognitive enhancement. These findings raise the alternative possibility that the fine motor control of pianists may be improved by stimulating the contralateral motor cortex. 

In our interdisciplinary study, we want to use the Halo Sport neurostimulation system (a physical training aid). This is a tDCS device, designed to optimise the efficiency of training sessions and accelerate gains in any physical skill, especially when the neurostimulation is complemented by focused repetitive training. The main questions of the study are the following: do pianists experience a noticeable difference in mastering repertoire with and without the HALO Sport device, and can functional and structural changes in the brain be observed after using the Halo Sport consistently over six months? Data collection will consist of EEG tests, fMRI scans, interviews, and analysis of performances by an expert panel. The value of the research is the possibility that practising with the HALO may improve the performance of the students and that changes in the brain may be observed. Interdisciplinary engagement is essential to conduct this research. If it is possible to establish that there are functional and structural changes in the brain and improvement in the performance of the pianists, the research can be extended to other disciplines with hopefully the same positive results.

This webinar is part of a series of three webinars on Interdisciplinarity that will be presented from November to December 2020 via Microsoft Teams for a duration of 45 minutes each. The webinar topics in the series will explore the intersection between Neuroscience and Music, between Science and Entrepreneurship, and between Science and Visual Arts.  

Date: Thursday 5 November 2020
Topic: The intersection between neuroscience and music 
Time: 13:00-13:45
RSVP: Alicia Pienaar, pienaaran1@ufs.ac.za by 4 November 2020 at 12:00
Platform: Microsoft Teams

Introduction and welcome
Prof Corli Witthuhn – Vice-Rector: Research at the University of the Free State 

Presenter
Dr Frelét de Villiers

Dr de Villiers is a Senior Lecturer at the Odeion School of Music. She is head of the Methodology modules, short learning programmes, lectures in piano, music pedagogy, arts management, and is a supervisor for postgraduate students. She is a member of the Faculty of the Humanities Research Committee, Interdisciplinary Centre for Digital Futures, Scientific Committee (Arts), and the Ethics Committee (the Humanities). Her field of expertise is piano technique, with particular emphasis on the influence of the brain and the whole-brain approach to music. Her passion is the use of technology in the music teaching situation – she developed a note-learning app, PianoBoost (available on Google Play).

News Archive

UFS PhD student receives more than R5,8 million to take agricultural research to African farmers
2015-07-06

Prof Maryke Labuschagne and Bright Peprah. (Photo: Supplied)

Bright Peprah, a Plant Breeding PhD student from Ghana in the Department of Plant Sciences at the University of the Free State received an award from the competitive Program for Emerging Agricultural Research Leaders (PEARL) of the Bill and Melinda Gates Foundation (BMGF) for one of his projects.

From the more than 750 proposals for funding that were received from African researchers, only 19 received funding from PEARL. PEARL is an agricultural initiative by the BMGF to take agricultural research products to African farmers. It also aims at involving the youth and women in agriculture.

Peprah’s proposal to introgress beta carotene into farmer-preferred cassava landraces was part of the final 19 proposals funded. The project is being led by the Council for Scientific and Industrial Research (CSIR)Crops Research Institute (CRI), and has the International Institute of Tropical Agriculture (IITA) and the International Centre for Tropical Agriculture (CIAT) as international partners with Peprah as the principal investigator.


The development of nutrient-dense cassava cultivars needs attention to eliminate the ramifications of malnutrition among the poor in an inexpensive and more sustainable way.
Photo: Supplied

He received $473 000 (R5,8 million) for his project on the improvement of beta-carotene content in cassava.

Peprah decided on this project because the populations of underdeveloped and developing countries, such as Ghana, commonly suffer undernourishment and/or hidden hunger, predisposing them to diseases from micronutrients deficiencies. “Vitamin A deficiency constitutes an endemic public health problem which affects women and children largely,” he says.

“In Africa, cassava is widely consumed by the populace. Unfortunately, in these areas, malnutrition is endemic to a significant extent, partly due to the low micronutrients in this tuberous root crop, which is a major component of most household diets. It is for this reason that the development of nutrient- dense cassava cultivars needs much attention to eliminate the ramifications of malnutrition among the poor in an inexpensive and more sustainable way.

“To date we have selected top eight genotypes from germplasm collected from the International Institute of Tropical Agriculture (IITA) which are high in carotenoids and also poundable, a key trait to Ghanaian farmers. These eight genotypes have been planted at different locations in Ghana, and being evaluated by different stakeholders (consumers, researchers, producers, commercial farmers, processors, etc.). If found suitable, the genotypes will be released to farmers, which we hope will solve some of the micronutrient problems in Ghana.

“My projects seek to develop new cassava varieties that will have both high dry matter and beta carotene which has been reported to be negatively correlated (as one increase, the other decreases). The breeding method will be crossing varieties that are high in beta carotene with those with high dry matter, and checking the performance of the seedlings later. Developing such new varieties (yellow flesh cassava) will increase their adoption rate by Ghanaian farmers,” he said.

Prof Maryke Labuschagne, Professor in Plant Breeding in the Department Plant Sciences and Peprah’s study leader, said: “This project has the potential to alleviate vitamin A deficiency in the West African region, where this deficiency is rampant, causing blindness in many people, especially children."

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept