Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2020 | Story Nitha Ramnath


Lunchtime learning webinar series on Interdisciplinarity in Action

Mastering a musical instrument, such as the piano, requires the simultaneous integration of a multimodal, sensory system and motor information with multimodal, sensory feedback mechanisms that continuously monitor the performance. Performing intricate movements requires complex, sensory-motor programming of finger and hand movements, which can result in a reorganisation of the brain regarding functional and structural changes of existing and the establishment of new connections. Neuronal networks involved in music processing are adaptable and fast-changing. When motor skills are simplified to the most important action, it consists of nerve impulses sent to the muscles.

In this webinar, Dr Frelét de Villiers discusses the interdisciplinarity between the two fields of music and neuroscience. Promising preliminary data has been reported for applications of transcranial direct stimulation (tDCS) of the motor cortex, ranging from stroke rehabilitation to cognitive enhancement. These findings raise the alternative possibility that the fine motor control of pianists may be improved by stimulating the contralateral motor cortex. 

In our interdisciplinary study, we want to use the Halo Sport neurostimulation system (a physical training aid). This is a tDCS device, designed to optimise the efficiency of training sessions and accelerate gains in any physical skill, especially when the neurostimulation is complemented by focused repetitive training. The main questions of the study are the following: do pianists experience a noticeable difference in mastering repertoire with and without the HALO Sport device, and can functional and structural changes in the brain be observed after using the Halo Sport consistently over six months? Data collection will consist of EEG tests, fMRI scans, interviews, and analysis of performances by an expert panel. The value of the research is the possibility that practising with the HALO may improve the performance of the students and that changes in the brain may be observed. Interdisciplinary engagement is essential to conduct this research. If it is possible to establish that there are functional and structural changes in the brain and improvement in the performance of the pianists, the research can be extended to other disciplines with hopefully the same positive results.

This webinar is part of a series of three webinars on Interdisciplinarity that will be presented from November to December 2020 via Microsoft Teams for a duration of 45 minutes each. The webinar topics in the series will explore the intersection between Neuroscience and Music, between Science and Entrepreneurship, and between Science and Visual Arts.  

Date: Thursday 5 November 2020
Topic: The intersection between neuroscience and music 
Time: 13:00-13:45
RSVP: Alicia Pienaar, pienaaran1@ufs.ac.za by 4 November 2020 at 12:00
Platform: Microsoft Teams

Introduction and welcome
Prof Corli Witthuhn – Vice-Rector: Research at the University of the Free State 

Presenter
Dr Frelét de Villiers

Dr de Villiers is a Senior Lecturer at the Odeion School of Music. She is head of the Methodology modules, short learning programmes, lectures in piano, music pedagogy, arts management, and is a supervisor for postgraduate students. She is a member of the Faculty of the Humanities Research Committee, Interdisciplinary Centre for Digital Futures, Scientific Committee (Arts), and the Ethics Committee (the Humanities). Her field of expertise is piano technique, with particular emphasis on the influence of the brain and the whole-brain approach to music. Her passion is the use of technology in the music teaching situation – she developed a note-learning app, PianoBoost (available on Google Play).

News Archive

Mushrooms, from gourmet food for humans to fodder for animals
2016-12-19

Description: Mushroom research photo 2 Tags: Mushroom research photo 2 

From the UFS Department of Microbial Biochemical and
Food Biotechnology are, from left: Prof Bennie Viljoen,
researcher,
MSc student Christie van der Berg,
and PhD student Christopher Rothman
Photo: Anja Aucamp

Mushrooms have so many medicinal applications that humans have a substance in hand to promote long healthy lives. And it is not only humans who benefit from these macrofungi growing mostly in dark spaces.

“The substrate applied for growing the mushrooms can be used as animal fodder. Keeping all the medicinal values intact, these are transferred to feed goats as a supplement to their daily diet,” said Prof Bennie Viljoen, researcher in the Department of Microbial, Biochemical and Food Biotechnology at the UFS.

Curiosity and a humble start
“The entire mushroom project started two years ago as a sideline of curiosity to grow edible gourmet mushrooms for my own consumption. I was also intrigued by a friend who ate these mushrooms in their dried form to support his immune system, claiming he never gets sick. The sideline quickly changed when we discovered the interesting world of mushrooms and postgraduate students became involved.

“Since these humble beginnings we have rapidly expanded with the financial help of the Technology Transfer Office to a small enterprise with zero waste,” said Prof Viljoen. The research group also has many collaborators in the industry with full support from a nutraceutical company, an animal feed company and a mushroom growers’ association.

Prof Viljoen and his team’s mushroom research has various aspects.

Growing the tastiest edible mushrooms possible
“We are growing gourmet mushrooms on agricultural waste under controlled environmental conditions to achieve the tastiest edible mushrooms possible. This group of mushrooms is comprised of the King, Pink, Golden, Grey, Blue and Brown Oysters. Other than the research results we have obtained, this part is mainly governed by the postgraduate students running it as a business with the intention to share in the profit from excess mushrooms because they lack research bursaries. The mushrooms are sold to restaurants and food markets at weekends,” said Prof Viljoen.

Description: Mushroom research photo 1 Tags: Mushroom research photo 1 

Photo: Anja Aucamp

Natural alternative for the treatment of various ailments
“The second entity of research encompasses the growth and application of medicinal mushrooms. Throughout history, mushrooms have been used as a natural alternative for the treatment of various ailments. Nowadays, macrofungi are known to be a source of bioactive compounds of medicinal value. These include prevention or alleviation of heart disease, inhibition of platelet aggregation, reduction of blood glucose levels, reduction of blood cholesterol and the prevention or alleviation of infections caused by bacterial, viral, fungal and parasitic pathogens. All of these properties can be enjoyed by capsulation of liquid concentrates or dried powdered mushrooms, as we recently confirmed by trial efforts which are defined as mushroom nutriceuticals,” he said.

Their research focuses on six different medicinal genera, each with specific medicinal attributes:
1.    Maitake: the most dominant property exhibited by this specific mushroom is the reduction of blood pressure as well as cholesterol. Other medicinal properties include anticancer, antidiabetic and immunomodulating while it may also improve the health of HIV patients.
2.    The Turkey Tail mushroom is known for its activity against various tumours and viruses as well as its antioxidant properties.
3.    Shiitake mushrooms have antioxidant properties and are capable of lowering blood serum cholesterol (BSC). The mushroom produces a water-soluble polysaccharide, lentinan, considered to be responsible for anticancer, antimicrobial and antitumour properties.
4.    The Grey Oyster mushroom has medicinal properties such as anticholesterol, antidiabetic, antimicrobial, antioxidant, antitumour and immunomodulatory properties.
5.    Recently there has been an increased interest in the Lion’s Mane mushroom which contains nerve growth factors (NGF) and may be applied as a possible treatment of Alzheimer’s disease as this compound seems to have the ability to re-grow and rebuild myelin by stimulating neurons.
6.    Reishi mushrooms are considered to be the mushrooms with the most medicinal properties due to their enhancing health effects such as treatment of cancer, as well as increasing longevity, resistance and recovery from diseases.


Description: Mushroom research photo 3 Tags: Mushroom research photo 3


Valuable entity for the agricultural sector
Another research focus is the bio-mushroom application phenome, to break down trees growing as encroaching plants. This research is potentially very valuable for the agricultural sector in the areas where Acacia is an encroaching problem. With this process, waste products are upgraded to a usable state. “It is therefore, possible to convert woody biomass with a low digestibility and limited availability of nutrients into high-quality animal fodder. By carefully selecting the right combination of fungus species to ferment agro-wastes, a whole host of advantages could become inherently part of the substrate. Mushrooms could become a biotechnological tool used to ‘inject’ the substrate that will be fed to animals with nutrition and/or medicine as the need and situation dictates,” said Prof Viljoen.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept