Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 September 2020 | Story Lacea Loader

 


The South African Economy: 'Post-COVID-19, Post-Crisis'


As a public higher-education institution in South Africa with a responsibility to contribute to public discourse, the University of the Free State (UFS) will be presenting the 3rd UFS Thought-Leader Series as part of the Vrystaat Literature Festival’s online initiative, VrySpraak-digitaal and in collaboration with Vrye Weekblad


This year, higher-education institutions globally are situated within a challenging context of COVID-19. Aware of, and grounded in the reality that the world will not return to the normality of pre-COVID-19, our responsibility as scholars still remains to contribute to public discourse and offer innovative solutions that will impact the lives of people nationally and globally to help them understand and adapt to a new world order. 

Against this background and context, this year’s debates focus on Post-COVID-19, Post-Crisis with Health and Modelling, the Economy, Politics and Predictions for 2021 as the sub-themes. Placed within a COVID-19 context, and in lieu of the Free State Arts Festival, the series will be presented virtually, in the form of one webinar per month, from August 2020 to November 2020. 

Second webinar presented on 23 September 2020

The South African economy was already in the doldrums before the COVID-19 crisis. Recent data from the NIDS-CRAM study suggests that as many as 3 million people might have lost their jobs as a result of the lockdown. In addition, the government's debt burden has deteriorated. What are the prospects for the South African economy post-COVID-19, post-Crisis?

 
Date: 23 September 2020
Topic: The South African Economy: Post-COVID-19, Post-Crisis
Time: 11:00-12:30

RSVP: Alicia Pienaar, pienaaran1@ufs.ac.za by 18 September 2020 

Facilitator:

Editor: Vrye Weekblad 
Biography

Introduction and welcome:

Rector and Vice-Chancellor, UFS

Panellists:

Chairperson: Old Mutual Limited
Biography

Ms Ann Bernstein
Executive Director, Centre for Development and Enterprise (CDE)

Editor-in-Chief of City Press
Biography

 


News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept