Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2020 | Story Nombulelo Shange | Photo Supplied
Nombulelo Shange is a Lecturer in the Department of Sociology.

Heritage Day is almost here; it’s time to celebrate all the ‘fluffy’, less threatening to whiteness parts of African culture, braai, and sample weird and wonderful traditional food we’ve never tried before. For one day, we go to work in beautiful colourful traditional attires, put on cultural dance and singing performances, and share it on social media. We will have dialogues on ubuntu and how we should use it to ‘turn the other cheek’ and ignore structural oppression in an attempt to save the failed rainbow nation. What will be missing, and what is always missing, is serious discourse on how side-lined indigenous knowledge can and should be used to address poverty, developmental and ecological challenges, our struggling health-care system, and many other modern and historical challenges that South Africa is faced with. 

Decolonising knowledge systems

#FeesMustFall protests in 2015 and 2016 briefly brought the issue of decolonising knowledge systems and, well … everything to the fore. But since the end of the FMF protests, these discussions have been confined to the university space and are not being heard in other important spaces such as workplaces, churches, healthcare structures, schools, etc. Even within universities, students have the sense that their decolonial agenda has been hijacked and turned into a PR activity that pushes reform and minimal systematic change instead of revolution and a total dismantling. And so, indigenous knowledge ends up being manipulated and moulded to fit the Western context rather than being the foundation of the curriculum. 

The COVID-19 global pandemic has forced us into a precarious space, where we have to rethink almost everything about life, our work environment, how we use technology, how we socialise and interact with each other, how we run schools, how we show caring, and so much more. We have an opportunity here to rethink how we can use this disruption and those that will come in future to advance our cultural and traditional medical practices. So much of Western/modern medicine is already based on the cultural appropriation of African knowledge systems, which we as Africans at times look down upon. The appropriation of African ideas is a manipulation that involves stealing African ideas, presenting them as Western, while convincing Africans that the same practices are inferior. One example of this is the story of Onesimus, the African slave who cured smallpox.

Onesimus’ role in curing smallpox

Onesimus lived during the smallpox pandemic of the early 1700s, which claimed 30% of the lives of those infected. Onesimus was sold to Cotton Mather, a New England minister and author. During the pandemic, Onesimus advised Mather that smallpox was preventable. Onesimus shared the details of a common surgical procedure, which helped to prevent smallpox and many other contagious illnesses in Africa. The procedure involved making an incision on a patient’s arm and exposing them to a small amount of the disease to allow the body to build immunity to the disease in a controlled environment while still under the care of the healthcare provider. In the case of smallpox, it was a small amount of pus from an infected person that was rubbed on the incision of the patient being immunised. Mather then ran human trials on slaves and found this vaccine to be successful. The slaves who formed part of his trials were less likely to contract smallpox, and those who did were more likely to recover.

Just like most important black contributions in history, Onesimus’ role was written from the history books, and the credit was given to Mather. Eventually, scientists researched and explored this method, and their discoveries led to modern-day vaccination medicine and technology that saves millions of lives every year. This and other violent historical erasures has contributed to the systemic racist ways in which we undermine African indigenous knowledge and always opt for Western solutions to health challenges, even in instances where the African solution might be cheaper, more accessible, and more effective. 

Traditional healers possess a wealth of knowledge

Fast forward more than 300 years to 2020, the COVID-19 outbreak and global lockdown. Countries such as China, Russia, the UK, and many others involved in trying to develop a vaccine for the Coronavirus are still exploring similar methodologies to what Onesimus shared with Mather to fight the spread of smallpox. Locally, traditional healers are frustrated because they are being left out of interventions to tackle the spread of the Coronavirus. In an interview with Sunday Independent, traditional healer Zama Ndebele expressed his disappointment over government’s lack of engagement with traditional healers. Ndebele added that their collaboration in creating a cure or vaccine would be useful and that they possess a wealth of knowledge about different herbs and their uses. Traditional healers are still interested in collaboration despite running the risk of experiencing erasure and exclusion from historical and scientific records, in a similar way to how Onesimus’s contribution was undermined.

Often when the discussion around mainstreaming African knowledge systems comes up, some worry that the quality of knowledge will be weakened. But French philosopher Michael Foucault, whose contributions have been instrumental in feminist and revolutionary discourse, reminds us that knowledge is about power. Foucault says even scientific knowledge is socially constructed. Those who dominate use their power to present their cultural ideas as the only objective scientific truth. 

Prioritise and value own knowledge systems

One positive reflection we should gain from the current global pandemic is that we should prioritise and value our own knowledge systems. We need to do better in investing in our cultural identity and indigenous knowledge. We need to ensure that it can be used as more than just gimmicks to attract Western tourists who expect us to ‘perform Africanness’ for their entertainment. African knowledge systems should be built into the way knowledge is produced, the way we run our healthcare systems, how we build new technologies. We can learn a lot from Asian countries such as South Korea who have done this successfully in many social structures, but more noticeably, in their healthcare systems that surpass even some of the best Western healthcare systems. Doing this can also potentially restore black identity and create a sense of pride as we start to see our practices represented in the mainstream and being labelled as important scientific contributions instead of an alternative. This reclaiming can drive us to juxtapose our knowledge systems with other cultures in ways that uplift and advance humanity. With ecological degradation looming and unknown public health crises lurking in our future, African knowledge systems that often encourage sustainability have the potential to save our lives in various ways.

Opinion article by Nombulelo Shange, Lecturer in the Department of Sociology, University of the Free State

 

Watch short video below:

 


News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept