Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2020 | Story Nombulelo Shange | Photo Supplied
Nombulelo Shange is a Lecturer in the Department of Sociology.

Heritage Day is almost here; it’s time to celebrate all the ‘fluffy’, less threatening to whiteness parts of African culture, braai, and sample weird and wonderful traditional food we’ve never tried before. For one day, we go to work in beautiful colourful traditional attires, put on cultural dance and singing performances, and share it on social media. We will have dialogues on ubuntu and how we should use it to ‘turn the other cheek’ and ignore structural oppression in an attempt to save the failed rainbow nation. What will be missing, and what is always missing, is serious discourse on how side-lined indigenous knowledge can and should be used to address poverty, developmental and ecological challenges, our struggling health-care system, and many other modern and historical challenges that South Africa is faced with. 

Decolonising knowledge systems

#FeesMustFall protests in 2015 and 2016 briefly brought the issue of decolonising knowledge systems and, well … everything to the fore. But since the end of the FMF protests, these discussions have been confined to the university space and are not being heard in other important spaces such as workplaces, churches, healthcare structures, schools, etc. Even within universities, students have the sense that their decolonial agenda has been hijacked and turned into a PR activity that pushes reform and minimal systematic change instead of revolution and a total dismantling. And so, indigenous knowledge ends up being manipulated and moulded to fit the Western context rather than being the foundation of the curriculum. 

The COVID-19 global pandemic has forced us into a precarious space, where we have to rethink almost everything about life, our work environment, how we use technology, how we socialise and interact with each other, how we run schools, how we show caring, and so much more. We have an opportunity here to rethink how we can use this disruption and those that will come in future to advance our cultural and traditional medical practices. So much of Western/modern medicine is already based on the cultural appropriation of African knowledge systems, which we as Africans at times look down upon. The appropriation of African ideas is a manipulation that involves stealing African ideas, presenting them as Western, while convincing Africans that the same practices are inferior. One example of this is the story of Onesimus, the African slave who cured smallpox.

Onesimus’ role in curing smallpox

Onesimus lived during the smallpox pandemic of the early 1700s, which claimed 30% of the lives of those infected. Onesimus was sold to Cotton Mather, a New England minister and author. During the pandemic, Onesimus advised Mather that smallpox was preventable. Onesimus shared the details of a common surgical procedure, which helped to prevent smallpox and many other contagious illnesses in Africa. The procedure involved making an incision on a patient’s arm and exposing them to a small amount of the disease to allow the body to build immunity to the disease in a controlled environment while still under the care of the healthcare provider. In the case of smallpox, it was a small amount of pus from an infected person that was rubbed on the incision of the patient being immunised. Mather then ran human trials on slaves and found this vaccine to be successful. The slaves who formed part of his trials were less likely to contract smallpox, and those who did were more likely to recover.

Just like most important black contributions in history, Onesimus’ role was written from the history books, and the credit was given to Mather. Eventually, scientists researched and explored this method, and their discoveries led to modern-day vaccination medicine and technology that saves millions of lives every year. This and other violent historical erasures has contributed to the systemic racist ways in which we undermine African indigenous knowledge and always opt for Western solutions to health challenges, even in instances where the African solution might be cheaper, more accessible, and more effective. 

Traditional healers possess a wealth of knowledge

Fast forward more than 300 years to 2020, the COVID-19 outbreak and global lockdown. Countries such as China, Russia, the UK, and many others involved in trying to develop a vaccine for the Coronavirus are still exploring similar methodologies to what Onesimus shared with Mather to fight the spread of smallpox. Locally, traditional healers are frustrated because they are being left out of interventions to tackle the spread of the Coronavirus. In an interview with Sunday Independent, traditional healer Zama Ndebele expressed his disappointment over government’s lack of engagement with traditional healers. Ndebele added that their collaboration in creating a cure or vaccine would be useful and that they possess a wealth of knowledge about different herbs and their uses. Traditional healers are still interested in collaboration despite running the risk of experiencing erasure and exclusion from historical and scientific records, in a similar way to how Onesimus’s contribution was undermined.

Often when the discussion around mainstreaming African knowledge systems comes up, some worry that the quality of knowledge will be weakened. But French philosopher Michael Foucault, whose contributions have been instrumental in feminist and revolutionary discourse, reminds us that knowledge is about power. Foucault says even scientific knowledge is socially constructed. Those who dominate use their power to present their cultural ideas as the only objective scientific truth. 

Prioritise and value own knowledge systems

One positive reflection we should gain from the current global pandemic is that we should prioritise and value our own knowledge systems. We need to do better in investing in our cultural identity and indigenous knowledge. We need to ensure that it can be used as more than just gimmicks to attract Western tourists who expect us to ‘perform Africanness’ for their entertainment. African knowledge systems should be built into the way knowledge is produced, the way we run our healthcare systems, how we build new technologies. We can learn a lot from Asian countries such as South Korea who have done this successfully in many social structures, but more noticeably, in their healthcare systems that surpass even some of the best Western healthcare systems. Doing this can also potentially restore black identity and create a sense of pride as we start to see our practices represented in the mainstream and being labelled as important scientific contributions instead of an alternative. This reclaiming can drive us to juxtapose our knowledge systems with other cultures in ways that uplift and advance humanity. With ecological degradation looming and unknown public health crises lurking in our future, African knowledge systems that often encourage sustainability have the potential to save our lives in various ways.

Opinion article by Nombulelo Shange, Lecturer in the Department of Sociology, University of the Free State

 

Watch short video below:

 


News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept