Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 September 2020 | Story Dr Nitha Ramnath | Photo Supplied
Devina Harry Kader Asmal Fellowship
The UFS’ Devina Harry was accepted into the Kader Asmal Fellowship Programme.

The UFS’ own Devina Harry is set to travel to Ireland in September 2020 to begin a year-long Fellowship Programme for a Master of Business. As one of 20 students selected from the African continent, Devina was recently accepted into the Kader Asmal Fellowship Programme, which affords her the opportunity to study in Ireland during the 2020/21 academic year.

A research assistant in the Department of Business Management, Devina holds an Honours in Marketing. “I am very grateful to be awarded this scholarship and excited about this new journey,” says Devina, who is scheduled to begin the programme in October 2020. “I hope to come back to South Africa and contribute to my field of study,” she says.

Devina went through a rigorous application process and had to meet the criteria for selection, one of which is having a minimum average grade point of 75% for her honours.

Prof Brownhilder Nene, Head of Department: Business Management, gave Devina some words of encouragement: “You will never know how far you can go unless you try. Thank you, Devina, for stepping out of your comfort zone and getting this scholarship.” 

The Kader Asmal Fellowship Programme is a South African strand of a broader Ireland-Africa Fellows Programme managed by the Irish Department of Foreign Affairs and Trade. It was set up in 2012 in honour of the late Professor Kader Asmal, and is a fully-funded scholarship opportunity for those who want to develop skills and knowledge to contribute to the achievement of the Sustainable Development Goals in South Africa.

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept