Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2020 | Story Andre Damons | Photo Charl Devenish
Faculty of Health Sciences donation of PPEs
A group of medical students pose with their new masks, a donation by an alumnus of the Faculty of Health Sciences.

The Faculty of Health Sciences at the University of the Free State (UFS) welcomed the generous donation of 1 000 surgical masks by one of its alumni to aid medical students in this faculty with their clinical training. 

The Professional Provident Society (PPS), a financial services company focused solely on providing intelligent financial solutions for graduate professionals, also donated personal protective equipment (PPE) to the Faculty of Health Sciences.
The first donation was made by Dr Riaan Flooks, a Specialist Physician at Mediclinic Bloemfontein. Dr Flooks received the masks from a friend and decided to donate some of the masks to the UFS. 

Thankful for donations 

Prof Gert van Zyl, Dean: Faculty of Health Sciences, says they are thankful for the donations. 
“All donations help, big or small, and it will help our students to do their tasks and to help where necessary,” Prof Van Zyl said about the second donation by PPS. 
Prof Nathaniel Mofolo, Head: School of Clinical Medicine, expressed his gratitude to Dr Flooks and called him a patron of the university and the faculty.
“On behalf of the School of Clinical Medicine, I hereby wish to express our heartfelt gratitude for your generous contribution and support. This comes at the most needed time and will go a long way in assisting us,” said Prof Mofolo.  
Dr Lynette van der Merwe, undergraduate medical programme director in the School of Clinical Medicine at the University of the Free State (UFS), added that the donation of essential PPE to students for use during training in the clinical areas was much appreciated.  
“The support for the academic programme in a practical, tangible way is highly valuable, as it will assist in protecting students while they are in clinical training.”

Doing their bit

According to PPS, one of the positives of the COVID-19 pandemic is the contributions of so many to deal with the crisis – from individuals to big corporates – who want little or nothing in return.  
“We all need to do our bit, and the PPS board has recently decided to contribute R25 million to fight the pandemic in South Africa. In deciding where this would make the biggest impact, our unique positioning among professionals and our relationship with professional associations were considered.”  
“We are also very conscious that health professionals, in particular, are the front-line soldiers in this war, and need to be protected.  It was therefore decided that a major portion of the money will be used to purchase personal protective equipment (PPE) for the safety of medical professionals in both the public and private sectors,” according to PPS.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept