Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2020 | Story Leonie Bolleurs | Photo Supplied
Zama Sithole

Zama Sithole, a master’s student in Environmental Managementat the University of the Free State (UFS), would one day like to assist communal artisanal small-scale miners (ASM) to legalise their work. Although the ASMs are not involved in turf wars or criminality as in the case of zama-zamas, they are deemed illegal workers.

The prime mining legislation, the Mineral and Petroleum Resources Development Act, makes no provision for subsistence or communal ASM activities. Such miners are therefore considered illegal miners.

“ASM employs more than 20 million people globally and a country such as South Africa, with an unemployment rate of 30,1%, should assimilate this type of mining as a legal form of employment,” says Zama.

“Their only client base is the surrounding communities. Mining, besides government grants, is their only source of income.”

Zama aspires to assist the illegal miners to become legal and reap the benefits of skills and funding to increase their income.

“And guidance from the regulatory authorities will ensure that the communal ASM miners become more aware of environmental management,” she adds.

Zama recently presented her research, titled: Shortcomings of the South African Legislative Framework in Addressing Communal Artisanal Small-scale Mining: A Blaauwbosch Case Studyat the 2020 Environmental Law Association (ELA) Annual Student Conference.

She also received the award for Best Speaker at the conference.

In her research, Zama focuses on Blaauwbosch, a rural township area located south-east of Newcastle in northern KwaZulu-Natal, where subsistence coal and clay opencast mining by community members has been going on for more than four decades.

Environmental degradation

According to the Mineral and Petroleum Resources Development Act, mining is only deemed legal if there is a mining permit, mining right, production right or preferent mining right authorised by the Department of Mineral Resources. Since communal ASMs are unregulated, environmental degradation is rife.

According to her investigation, environmental hazards such as traces of acid mine drainage and poor air quality (due to spontaneous combustion), are localised in the area. This is a deterrent to the surrounding community that has minimal health and safety awareness.

Owing to the fact that communal ASM miners are not assimilated into the legislation, the competent authorities such as the Department of Mineral Resources and Energy and the Department of Water and Sanitation cannot offer mineral regulation and environmental guidance support.

Losing revenue

Zama says government is also losing revenue by not legalising this unique sector. She believes it is important to differentiate between communal ASMs and the ‘zama-zama’ type of mining.
 
She also found that according to the Mining and Minerals Policy (1998), “regulations in respect of mining should be relevant, understandable and affordable to the small-scale miner and should be enforced in a site-specific manner.” ... “Tax and royalty rates, levies, and financial guarantees for rehabilitation should not constrain the development of small-scale operations.”

“However, to date, this has not been realised,” Zama states.

Communal ASM miners thus cannot benefit from government-funded initiatives to upskill them in terms of mining and environmental management.

Making a difference

Zama plans to conduct more research to understand the dynamics of how other countries have legalised this sector and draw learnings from this to determine how it can be applied in the South African context.

“In our country, there is very limited data and hence understanding on communal ASM. This could be one of the reasons why the government cannot make an informed decision on how to legalise this sector,” she says.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept