Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2020 | Story Leonie Bolleurs | Photo Supplied
Zama Sithole

Zama Sithole, a master’s student in Environmental Managementat the University of the Free State (UFS), would one day like to assist communal artisanal small-scale miners (ASM) to legalise their work. Although the ASMs are not involved in turf wars or criminality as in the case of zama-zamas, they are deemed illegal workers.

The prime mining legislation, the Mineral and Petroleum Resources Development Act, makes no provision for subsistence or communal ASM activities. Such miners are therefore considered illegal miners.

“ASM employs more than 20 million people globally and a country such as South Africa, with an unemployment rate of 30,1%, should assimilate this type of mining as a legal form of employment,” says Zama.

“Their only client base is the surrounding communities. Mining, besides government grants, is their only source of income.”

Zama aspires to assist the illegal miners to become legal and reap the benefits of skills and funding to increase their income.

“And guidance from the regulatory authorities will ensure that the communal ASM miners become more aware of environmental management,” she adds.

Zama recently presented her research, titled: Shortcomings of the South African Legislative Framework in Addressing Communal Artisanal Small-scale Mining: A Blaauwbosch Case Studyat the 2020 Environmental Law Association (ELA) Annual Student Conference.

She also received the award for Best Speaker at the conference.

In her research, Zama focuses on Blaauwbosch, a rural township area located south-east of Newcastle in northern KwaZulu-Natal, where subsistence coal and clay opencast mining by community members has been going on for more than four decades.

Environmental degradation

According to the Mineral and Petroleum Resources Development Act, mining is only deemed legal if there is a mining permit, mining right, production right or preferent mining right authorised by the Department of Mineral Resources. Since communal ASMs are unregulated, environmental degradation is rife.

According to her investigation, environmental hazards such as traces of acid mine drainage and poor air quality (due to spontaneous combustion), are localised in the area. This is a deterrent to the surrounding community that has minimal health and safety awareness.

Owing to the fact that communal ASM miners are not assimilated into the legislation, the competent authorities such as the Department of Mineral Resources and Energy and the Department of Water and Sanitation cannot offer mineral regulation and environmental guidance support.

Losing revenue

Zama says government is also losing revenue by not legalising this unique sector. She believes it is important to differentiate between communal ASMs and the ‘zama-zama’ type of mining.
 
She also found that according to the Mining and Minerals Policy (1998), “regulations in respect of mining should be relevant, understandable and affordable to the small-scale miner and should be enforced in a site-specific manner.” ... “Tax and royalty rates, levies, and financial guarantees for rehabilitation should not constrain the development of small-scale operations.”

“However, to date, this has not been realised,” Zama states.

Communal ASM miners thus cannot benefit from government-funded initiatives to upskill them in terms of mining and environmental management.

Making a difference

Zama plans to conduct more research to understand the dynamics of how other countries have legalised this sector and draw learnings from this to determine how it can be applied in the South African context.

“In our country, there is very limited data and hence understanding on communal ASM. This could be one of the reasons why the government cannot make an informed decision on how to legalise this sector,” she says.

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept