Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2020 | Story Leonie Bolleurs | Photo Supplied
Zama Sithole

Zama Sithole, a master’s student in Environmental Managementat the University of the Free State (UFS), would one day like to assist communal artisanal small-scale miners (ASM) to legalise their work. Although the ASMs are not involved in turf wars or criminality as in the case of zama-zamas, they are deemed illegal workers.

The prime mining legislation, the Mineral and Petroleum Resources Development Act, makes no provision for subsistence or communal ASM activities. Such miners are therefore considered illegal miners.

“ASM employs more than 20 million people globally and a country such as South Africa, with an unemployment rate of 30,1%, should assimilate this type of mining as a legal form of employment,” says Zama.

“Their only client base is the surrounding communities. Mining, besides government grants, is their only source of income.”

Zama aspires to assist the illegal miners to become legal and reap the benefits of skills and funding to increase their income.

“And guidance from the regulatory authorities will ensure that the communal ASM miners become more aware of environmental management,” she adds.

Zama recently presented her research, titled: Shortcomings of the South African Legislative Framework in Addressing Communal Artisanal Small-scale Mining: A Blaauwbosch Case Studyat the 2020 Environmental Law Association (ELA) Annual Student Conference.

She also received the award for Best Speaker at the conference.

In her research, Zama focuses on Blaauwbosch, a rural township area located south-east of Newcastle in northern KwaZulu-Natal, where subsistence coal and clay opencast mining by community members has been going on for more than four decades.

Environmental degradation

According to the Mineral and Petroleum Resources Development Act, mining is only deemed legal if there is a mining permit, mining right, production right or preferent mining right authorised by the Department of Mineral Resources. Since communal ASMs are unregulated, environmental degradation is rife.

According to her investigation, environmental hazards such as traces of acid mine drainage and poor air quality (due to spontaneous combustion), are localised in the area. This is a deterrent to the surrounding community that has minimal health and safety awareness.

Owing to the fact that communal ASM miners are not assimilated into the legislation, the competent authorities such as the Department of Mineral Resources and Energy and the Department of Water and Sanitation cannot offer mineral regulation and environmental guidance support.

Losing revenue

Zama says government is also losing revenue by not legalising this unique sector. She believes it is important to differentiate between communal ASMs and the ‘zama-zama’ type of mining.
 
She also found that according to the Mining and Minerals Policy (1998), “regulations in respect of mining should be relevant, understandable and affordable to the small-scale miner and should be enforced in a site-specific manner.” ... “Tax and royalty rates, levies, and financial guarantees for rehabilitation should not constrain the development of small-scale operations.”

“However, to date, this has not been realised,” Zama states.

Communal ASM miners thus cannot benefit from government-funded initiatives to upskill them in terms of mining and environmental management.

Making a difference

Zama plans to conduct more research to understand the dynamics of how other countries have legalised this sector and draw learnings from this to determine how it can be applied in the South African context.

“In our country, there is very limited data and hence understanding on communal ASM. This could be one of the reasons why the government cannot make an informed decision on how to legalise this sector,” she says.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept