Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 September 2020 | Story Prof Corina Walsh | Photo Sonia du Toit (Kaleidoscope Studios)
Prof Corinna Walsh is from the Department of Nutrition and Dietetics and an NRF C-rated researcher at the University of the Free State.

The COVID-19 pandemic highlighted the challenges of food insecurity, hunger, and malnutrition that existed prior to the outbreak, but which are now affecting more individuals and households. During June 2020, three organisations – the Nutrition Society of South Africa (NSSA), the Association for Dietetics in South Africa (ADSA), and Dietetics-Nutrition is a Profession (DIP) – joined forces to call on the government to address malnutrition in all its forms. Prof Corinna Walsh from the Department of Nutrition and Dietetics at the University of the Free State (UFS) is the President of the Nutrition Society of South Africa, which aims to advance the scientific study of nutrition to promote appropriate strategies for the improvement of nutrition well-being. 

The call confirms that good nutrition is an essential part of an individual’s defence against disease and explains that malnutrition, in the forms of both over- and undernutrition, is closely related to an increased risk of illness and death, which has a considerable economic and societal impact. The Coronavirus pandemic has emphasised the importance of food security and nutritional well-being for all South Africans and has exposed the vulnerability and weaknesses of our food systems. 

How big is the problem of malnutrition in South Africa and what impact has the Coronavirus had on this situation?

The call highlights that undernutrition co-exists with the rising incidence of overweight and obesity (frequently in the same household) and resultant non-communicable diseases (NCDs) such as type 2 diabetes mellitus and hypertension. In South Africa, more than a quarter of the female adult population is overweight and more than a third is obese; it is estimated that 269 000 NCD-related deaths occur in the country annually. Obesity and NCDs are regarded as major risk factors for COVID-19 hospital admissions and complications. Over the past 20 years, the prevalence of chronic undernutrition in children has not improved, with 27% of children under the age of five being chronically undernourished. Chronic undernutrition in children manifests as impaired growth, referred to as stunting. By the age of two, this impaired growth and deficits in development become more difficult to reverse, resulting in intellectual impairment that compromises children’s school performance and employment prospects. Chronic undernutrition in children furthermore increases their future risk of obesity and non-communicable chronic diseases in adolescence and adulthood.

Although the nutrition situation in the country had been of concern prior to the pandemic, the acute nature and vast extent of the lockdown brought the plight of individuals and communities to the forefront. In addition to hunger and food insecurity and the resultant undernutrition, the pandemic also placed a focus on non-communicable chronic diseases such as obesity, hypertension, and diabetes. These comorbidities, mostly related to overnutrition, are seen to be associated with a more severe form of COVID-19 infection, as well as an increased risk of hospitalisation and death.

 With South Africa’s current economic challenges and the rise of unemployment, is the situation of malnutrition and food insecurity bound to worsen?

Food, water, sanitation, and social security are under severe pressure due to the pandemic. All of these factors are directly related to an increased risk of malnutrition. Further underlying causes of malnutrition include poverty, unemployment, and inequality, which require interventions over the medium and long term. 

The initial hard lockdown had an immediate and acute impact on households and communities in many ways. With regard to food and nutrition, these include interrupted access to food due to restrictions on travelling and informal trading; discontinuation of food and nutrition social programmes such as the National School Nutrition Programme and feeding at early childhood development programmes; increases in food prices and food expenditure; and reduced or lost income.

The pandemic came at a time when global food security and food systems were already under strain due to natural disasters, climate change and other challenges, exacerbating the need to transform food systems to be sustainable and resilient. 

What interventions are suggested to address the problem of malnutrition?

Food relief and social relief interventions, such as food parcels and social grants, could address the more immediate needs, but broader actions are required to address the underlying causes of malnutrition. 

An important first step in the fight against malnutrition will be to recognise the severity of the situation and the need for coordinated strategic efforts to address the underlying factors that contribute to malnutrition, such as insufficient access to food, affordability of fresh foods, poor health services, and a lack of safe water and sanitation. Food security and nutrition should therefore be addressed collectively with interventions aimed at tackling these factors. It will require concerted efforts from the government, the private sector and civil society to address the immediate, underlying, and structural causes of undernutrition. In view of this, the call proposes that interventions include the following:
-           Prioritise nutrition on policy agendas related to health and social security, including a regulatory framework to support access to healthy and affordable foods. Consideration can be given to a basket of subsidised healthy foods and greater regulation of prices of basic foodstuffs.
-           Provide strategic direction and ensure coordinated and aligned programming to address food and nutrition security in collaboration with other sectors, including civil society organisations. Interventions to ensure optimal nutrition should extend beyond the health-care system and should draw on complementary sectors such as agriculture, social protection, early childhood development, education, water, and sanitation.
-           Coordinate an adequate and targeted food and social relief approach, prioritising the most vulnerable and needy for short-term mitigation. Food relief should be standardised and tailored to the nutritional needs of targeted beneficiaries, especially children. 
-           Progress towards universal health coverage to ensure access to quality, essential health care. Focus on delivery of preventive nutrition services as part of the transformation and strengthening of the health system, integrating nutrition into universal health coverage as an indispensable prerequisite for longer-term benefit.
-           Prioritise the challenges faced by specific populations, including the elderly, women (especially women of childbearing age), children, and those with pre-existing medical conditions (most notably HIV/AIDS, TB, and NCDs), drawing on local structures to identify those most in need. 
-           Implement well-funded coordinated strategies to actively address the main drivers of malnutrition, paying attention to food, nutrition, and health, backed by responsive social protection mechanisms.
-           Improve access to quality nutrition care through investment in human resources to increase the number of qualified nutrition professionals, as well as education opportunities for other cadres of workers who provide nutrition services in primary care settings. Each point of contact with the health system should be recognised as an opportunity to direct caregivers to nutrition care and support services, with efficient referral pathways between sectors.
-           Promote nutrition education of the public through targeted and relevant nutrition messaging and communication campaigns.

Opinion article by Prof Corinna Walsh of the Department of Nutrition and Dietetics and an NRF C-rated researcher, University of the Free State.

 

News Archive

Inaugural lecture: Prof Robert Bragg, Dept. of Microbial, Biochemical and Food Biotechnology
2006-05-17



Attending the inaugural lecture were in front from the left Prof Robert Bragg (lecturer at the Department of Microbial, Biochemical and Food Biotechnology) and Frederick Fourie (Rector and Vice-Chancellor).  At the back from the left were Prof James du Preez (Departmental Chairperson:  Department of Microbial, Biochemical and Food Biotechnology) and Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences). Photo: Stephen Collett
 

A summary of an inaugural lecture delivered by Prof Robert Bragg at the University of the Free State:

CONTROL OF INFECTIOUS AVIAN DISEASES – LESSONS FOR MAN?

Prof Robert R Bragg
Department of Microbial, Biochemical and Food Biotechnology
University of the Free State

“Many of the lessons learnt in disease control in poultry will have application on human medicine,” said Prof Robert Bragg, lecturer at the University of the Free State’s (UFS) Department of Microbial, Biochemical and Food Biotechnology during his inaugural lecture.

Prof Bragg said the development of vaccines remains the main stay of disease control in humans as well as in avian species.  Disease control can not rely on vaccination alone and other disease-control options must be examined.  

“With the increasing problems of antibiotic resistance, the use of disinfection and bio security are becoming more important,” he said.

“Avian influenza (AI) is an example of a disease which can spread from birds to humans.  Hopefully this virus will not develop human to human transmission,” said Prof Bragg.

According to Prof Bragg, South Africa is not on the migration route of water birds, which are the main transmitters of AI.  “This makes South Africa one of the countries less likely to get the disease,” he said.

If the AI virus does develop human to human transmission, it could make the 1918 flu pandemic pale into insignificance.  During the 1918 flu pandemic, the virus had a mortality rate of only 3%, yet more than 50 million people died.

Although the AI virus has not developed human-to-human transmission, all human cases have been related to direct contact with infected birds. The mortality rate in humans who have contracted this virus is 67%.

“Apart from the obvious fears for the human population, this virus is a very serious poultry pathogen and can cause 100% mortality in poultry populations.  Poultry meat and egg production is the staple protein source in most countries around the world. The virus is currently devastating the poultry industry world-wide,” said Prof Bragg.

Prof Bragg’s research activities on avian diseases started off with the investigation of diseases in poultry.  “The average life cycle of a broiler chicken is 42 days.  After this short time, they are slaughtered.  As a result of the short generation time in poultry, one can observe changes in microbial populations as a result of the use of vaccines, antibiotics and disinfectants,” said Prof Bragg.   

“Much of my research effort has been directed towards the control of infectious coryza in layers, which is caused by the bacterium Avibacterium paragallinarum.  This disease is a type of sinusitis in the layer chickens and can cause a drop in egg product of up to 40%,” said Prof Bragg.

The vaccines used around the world in an attempt to control this disease are all inactivated vaccines. One of the most important points is the selection of the correct strains of the bacterium to use in the vaccine.

Prof Bragg established that in South Africa, there are four different serovars of the bacterium and one of these, the serovar C-3 strain, was believed to be unique to Southern Africa. He also recently discovered this serovar for the first time in Israel, thus indicating that this serovar might have a wider distribution than originally believed.

Vaccines used in this country did not contain this serovar.  Prof Bragg established that the long term use of vaccines not containing the local South African strain resulted in a shift in the population distribution of the pathogen.

Prof Bragg’s research activities also include disease control in parrots and pigeons.   “One of the main research projects in my group is on the disease in parrots caused by the circovirus Beak and Feather Disease virus. This virus causes serious problems in the parrot breeding industry in this country. This virus is also threatening the highly endangered and endemic Cape Parrot,” said Prof Bragg.

Prof Bragg’s research group is currently working on the development of a DNA vaccine which will assist in the control of the disease, not only in the parrot breeding industry, but also to help the highly endangered Cape Parrot in its battle for survival.

“Not all of our research efforts are directed towards infectious coryza or the Beak and Feather Disease virus.  One of my Masters students is currently investigating the cell receptors involved in the binding of Newcastle Disease virus to cancerous cells and normal cells of humans. This work will also eventually lead to a possible treatment of cancer in humans and will assist with the development of a recombinant vaccine for Newcastle disease virus,” said Prof Bragg.

We are also currently investigating an “unknown” virus which causes disease problems in poultry in the Western Cape,” said Prof Bragg.
 
“Although disinfection has been extensively used in the poultry industry, it has only been done at the pre-placement stage. In other words, disinfectants are used before the birds are placed into the house. Once the birds are placed, all use of disinfectants stops,” said Prof Bragg.

“Disinfection and bio security can be seen as the ‘Cinderella’ of disease control in poultry.  This is also true for human medicine. One just has to look at the high numbers of people who die from hospital-acquired infections to realise that disinfection is not a concept which is really clear in human health care,” said Prof Bragg.

Much research has been done in the control of diseases through vaccination and through the use of antibiotics. “These pillars of disease control are, however, starting to crumble and more effort is needed on disinfection and bio security,” said Prof Bragg.

Prof Bragg has been working in close co-operation with a chemical manufacturing company in Stellenbosch to develop a unique disinfectant which his highly effective yet not toxic to the birds.

As a result of this unique product, he has developed the continual disinfection program for use in poultry. In this program the disinfectant is used throughout the production cycle of the birds. It is also used to ensure that there is excellent pre-placement disinfection.

“The program is extensively used for the control of infectious diseases in the parrot-breeding industry in South Africa and the product has been registered in 15 countries around the world with registration in the USA in the final process,” said Prof Bragg.

“Although the problem of plasmid mediated resistance to disinfectants is starting to rear its ugly head, this has allowed for the opening of a new research field which my group will hopefully exploit in the near future,” he said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept