Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 September 2020 | Story Leonie Bolleurs | Photo Supplied
With the research grant awarded to Dr Thulisile Mphambukeli, she has the opportunity to make a difference in society, especially in terms of the incorporation of social justice into planning.

The Joint National Institute for the Humanities and Social Sciences (NIHSS) and Chinese Academy of Social Sciences (CASS) research projects have awarded a R500 000 research grant to a team led by Dr Thulisile Mphambukeli, the principal investigator (PI). 

Within the parameters of the theme of social justice, sustainable development, and quality of life, Dr Mphambukeli’s team will focus their research on exploring the land policies in BRICS that inform agricultural practices. They will also document the policy approaches and strategies adopted by China and South Africa respectively to support the agriculture-land-water-labour nexus; additionally, they will propose a common agricultural land policy for China and South Africa. 

The title of the research project is: Exploring the Situated Political Ecology and Economy of Agricultural Land Policies in BRICS: A Case Study of China and South Africa. 

Dr Mphambukeli, who is passionate about social justice, is a Senior Lecturer in the Department of Urban and Regional Planning at the University of the Free State (UFS). With this project, she has the opportunity to make a difference in society, especially in terms of social justice. 

 

We don’t want to see the next generation suffer because we did not use our voice.- Dr Thulisile Mphambukeli

The human factor is crucial

“We need to understand the dynamics of local communities. The incorporation of social justice in planning is crucial! We cannot claim that we ‘plan for people’ and ignore them at the same time. People must be at the centre of what we do. No one must be deprived of their fundamental basic human rights.”

The team consists of Dr Mphambukeli (PI), Prof Peliwe Lolwana (University of the Witwatersrand), Dr Victor Okorie (Enugu State University of Science and Technology, Nigeria), and Dr Abraham Matamanda (UFS).

For this initiative, the China Africa Institute (CAI), which is part of CASS, joined hands with the NIHSS. Together, they will oversee the research projects of researchers and academics from South Africa and China. The research project, running from 1 April this year to 31 March 2021, will bring forth publications/research outputs, advocacy policy briefs, and proceeding reports.

The programme aims to strengthen research in the field of the humanities and social sciences between the two countries. 

Support the fight against climate change

She believes that although the BRICS countries are not geographically connected, it is a functional community with the same interests. “As BRICS countries, we need to cooperate in the fight against climate change. It affects so many components, including water, food, agriculture, land, and quality of infrastructure,” says Dr Mphambukeli. 

Due to the current COVID-19 pandemic, researchers will meet online to discuss how China and South Africa can collaborate and cooperate. “We don’t want to see the next generation suffer because we did not use our voice,” she says. 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept