Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 September 2020 | Story Leonie Bolleurs | Photo Supplied
With the research grant awarded to Dr Thulisile Mphambukeli, she has the opportunity to make a difference in society, especially in terms of the incorporation of social justice into planning.

The Joint National Institute for the Humanities and Social Sciences (NIHSS) and Chinese Academy of Social Sciences (CASS) research projects have awarded a R500 000 research grant to a team led by Dr Thulisile Mphambukeli, the principal investigator (PI). 

Within the parameters of the theme of social justice, sustainable development, and quality of life, Dr Mphambukeli’s team will focus their research on exploring the land policies in BRICS that inform agricultural practices. They will also document the policy approaches and strategies adopted by China and South Africa respectively to support the agriculture-land-water-labour nexus; additionally, they will propose a common agricultural land policy for China and South Africa. 

The title of the research project is: Exploring the Situated Political Ecology and Economy of Agricultural Land Policies in BRICS: A Case Study of China and South Africa. 

Dr Mphambukeli, who is passionate about social justice, is a Senior Lecturer in the Department of Urban and Regional Planning at the University of the Free State (UFS). With this project, she has the opportunity to make a difference in society, especially in terms of social justice. 

 

We don’t want to see the next generation suffer because we did not use our voice.- Dr Thulisile Mphambukeli

The human factor is crucial

“We need to understand the dynamics of local communities. The incorporation of social justice in planning is crucial! We cannot claim that we ‘plan for people’ and ignore them at the same time. People must be at the centre of what we do. No one must be deprived of their fundamental basic human rights.”

The team consists of Dr Mphambukeli (PI), Prof Peliwe Lolwana (University of the Witwatersrand), Dr Victor Okorie (Enugu State University of Science and Technology, Nigeria), and Dr Abraham Matamanda (UFS).

For this initiative, the China Africa Institute (CAI), which is part of CASS, joined hands with the NIHSS. Together, they will oversee the research projects of researchers and academics from South Africa and China. The research project, running from 1 April this year to 31 March 2021, will bring forth publications/research outputs, advocacy policy briefs, and proceeding reports.

The programme aims to strengthen research in the field of the humanities and social sciences between the two countries. 

Support the fight against climate change

She believes that although the BRICS countries are not geographically connected, it is a functional community with the same interests. “As BRICS countries, we need to cooperate in the fight against climate change. It affects so many components, including water, food, agriculture, land, and quality of infrastructure,” says Dr Mphambukeli. 

Due to the current COVID-19 pandemic, researchers will meet online to discuss how China and South Africa can collaborate and cooperate. “We don’t want to see the next generation suffer because we did not use our voice,” she says. 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept