Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 September 2020 | Story Leonie Bolleurs | Photo Supplied
With the research grant awarded to Dr Thulisile Mphambukeli, she has the opportunity to make a difference in society, especially in terms of the incorporation of social justice into planning.

The Joint National Institute for the Humanities and Social Sciences (NIHSS) and Chinese Academy of Social Sciences (CASS) research projects have awarded a R500 000 research grant to a team led by Dr Thulisile Mphambukeli, the principal investigator (PI). 

Within the parameters of the theme of social justice, sustainable development, and quality of life, Dr Mphambukeli’s team will focus their research on exploring the land policies in BRICS that inform agricultural practices. They will also document the policy approaches and strategies adopted by China and South Africa respectively to support the agriculture-land-water-labour nexus; additionally, they will propose a common agricultural land policy for China and South Africa. 

The title of the research project is: Exploring the Situated Political Ecology and Economy of Agricultural Land Policies in BRICS: A Case Study of China and South Africa. 

Dr Mphambukeli, who is passionate about social justice, is a Senior Lecturer in the Department of Urban and Regional Planning at the University of the Free State (UFS). With this project, she has the opportunity to make a difference in society, especially in terms of social justice. 

 

We don’t want to see the next generation suffer because we did not use our voice.- Dr Thulisile Mphambukeli

The human factor is crucial

“We need to understand the dynamics of local communities. The incorporation of social justice in planning is crucial! We cannot claim that we ‘plan for people’ and ignore them at the same time. People must be at the centre of what we do. No one must be deprived of their fundamental basic human rights.”

The team consists of Dr Mphambukeli (PI), Prof Peliwe Lolwana (University of the Witwatersrand), Dr Victor Okorie (Enugu State University of Science and Technology, Nigeria), and Dr Abraham Matamanda (UFS).

For this initiative, the China Africa Institute (CAI), which is part of CASS, joined hands with the NIHSS. Together, they will oversee the research projects of researchers and academics from South Africa and China. The research project, running from 1 April this year to 31 March 2021, will bring forth publications/research outputs, advocacy policy briefs, and proceeding reports.

The programme aims to strengthen research in the field of the humanities and social sciences between the two countries. 

Support the fight against climate change

She believes that although the BRICS countries are not geographically connected, it is a functional community with the same interests. “As BRICS countries, we need to cooperate in the fight against climate change. It affects so many components, including water, food, agriculture, land, and quality of infrastructure,” says Dr Mphambukeli. 

Due to the current COVID-19 pandemic, researchers will meet online to discuss how China and South Africa can collaborate and cooperate. “We don’t want to see the next generation suffer because we did not use our voice,” she says. 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept