Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 September 2020 | Story Leonie Bolleurs | Photo Supplied
With the research grant awarded to Dr Thulisile Mphambukeli, she has the opportunity to make a difference in society, especially in terms of the incorporation of social justice into planning.

The Joint National Institute for the Humanities and Social Sciences (NIHSS) and Chinese Academy of Social Sciences (CASS) research projects have awarded a R500 000 research grant to a team led by Dr Thulisile Mphambukeli, the principal investigator (PI). 

Within the parameters of the theme of social justice, sustainable development, and quality of life, Dr Mphambukeli’s team will focus their research on exploring the land policies in BRICS that inform agricultural practices. They will also document the policy approaches and strategies adopted by China and South Africa respectively to support the agriculture-land-water-labour nexus; additionally, they will propose a common agricultural land policy for China and South Africa. 

The title of the research project is: Exploring the Situated Political Ecology and Economy of Agricultural Land Policies in BRICS: A Case Study of China and South Africa. 

Dr Mphambukeli, who is passionate about social justice, is a Senior Lecturer in the Department of Urban and Regional Planning at the University of the Free State (UFS). With this project, she has the opportunity to make a difference in society, especially in terms of social justice. 

 

We don’t want to see the next generation suffer because we did not use our voice.- Dr Thulisile Mphambukeli

The human factor is crucial

“We need to understand the dynamics of local communities. The incorporation of social justice in planning is crucial! We cannot claim that we ‘plan for people’ and ignore them at the same time. People must be at the centre of what we do. No one must be deprived of their fundamental basic human rights.”

The team consists of Dr Mphambukeli (PI), Prof Peliwe Lolwana (University of the Witwatersrand), Dr Victor Okorie (Enugu State University of Science and Technology, Nigeria), and Dr Abraham Matamanda (UFS).

For this initiative, the China Africa Institute (CAI), which is part of CASS, joined hands with the NIHSS. Together, they will oversee the research projects of researchers and academics from South Africa and China. The research project, running from 1 April this year to 31 March 2021, will bring forth publications/research outputs, advocacy policy briefs, and proceeding reports.

The programme aims to strengthen research in the field of the humanities and social sciences between the two countries. 

Support the fight against climate change

She believes that although the BRICS countries are not geographically connected, it is a functional community with the same interests. “As BRICS countries, we need to cooperate in the fight against climate change. It affects so many components, including water, food, agriculture, land, and quality of infrastructure,” says Dr Mphambukeli. 

Due to the current COVID-19 pandemic, researchers will meet online to discuss how China and South Africa can collaborate and cooperate. “We don’t want to see the next generation suffer because we did not use our voice,” she says. 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept