Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 September 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Angeline van Biljon was elected as a member of the Southern African Plant Breeders’ Association (SAPBA) executive committee.

Ever wondered how seedless fruit such as lemons, watermelons, and grapes came to be?

Dr Angeline van Biljon, Senior Lecturer in the Department of Plant Sciences at the University of the Free State (UFS), was recently elected as a member of the Southern African Plant Breeders’ Association (SAPBA) executive committee where she will serve until March 2022.

She says it is a privilege to be a member of the team. “It is an opportunity to bring plant breeding to the community so that more people can know about the subject. For example, that seedless lemons, grapes, and watermelons does not just happen; that orange sweet potatoes with high beta-carotene are bred to combat vitamin A deficiency; and that wheat quality is important to make a good loaf of bread.”

This position also brings with it the possibility for her students to work closely with people in industry. “Other members of the committee are breeders in seed and breeding companies,” explains Dr Van Biljon.

Contributing on other platforms 

She was nominated and elected for this position during the SAPBA conference that was held at the Future Africa campus in Pretoria. Besides serving on the executive committee of SAPBA, she is involved with and are serving on several other platforms where she is making a difference in the plant breeding industry. 

Dr Van Biljon collaborates on wheat quality with researchers in the wheat industry at the Agricultural Research Council (ARC), Small Grain in Bethlehem. “I’m also a committee member of the Cereal Science and Technology – Southern African Association.”

For the past two years, she has been giving online lectures on biofortification as part of a National Research Foundation/Swedish Foundation for International Cooperation in Research and Higher Education (STINT/NRF) group in Alnarp in Sweden. However, she states a working visit to the Nanjing Agricultural University in Nanjing, China as one of her biggest highlights.


Today, I want to help students see the difference plant breeding can make in crop improvement and food security.


The difference plant breeding can make 

Although genetics was one of her passions as student, she later found herself as a flower breeder at the ARC Roodeplaat. Years later, she returned to the UFS to complete her PhD in Plant Breeding. And today, she wants to help students see the difference plant breeding can make in crop improvement and food security.

Currently, Dr Van Biljon is focusing on her research, which is the study of the nutritional value of various crops by determining, among others, the beta-carotene values of butternuts, the starch quality of wheat, and the tryptophan value of quality protein maize. “I also look at the influence of abiotic stress on the crop quality and nutritional value of various crops,” she adds.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept