Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 September 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Angeline van Biljon was elected as a member of the Southern African Plant Breeders’ Association (SAPBA) executive committee.

Ever wondered how seedless fruit such as lemons, watermelons, and grapes came to be?

Dr Angeline van Biljon, Senior Lecturer in the Department of Plant Sciences at the University of the Free State (UFS), was recently elected as a member of the Southern African Plant Breeders’ Association (SAPBA) executive committee where she will serve until March 2022.

She says it is a privilege to be a member of the team. “It is an opportunity to bring plant breeding to the community so that more people can know about the subject. For example, that seedless lemons, grapes, and watermelons does not just happen; that orange sweet potatoes with high beta-carotene are bred to combat vitamin A deficiency; and that wheat quality is important to make a good loaf of bread.”

This position also brings with it the possibility for her students to work closely with people in industry. “Other members of the committee are breeders in seed and breeding companies,” explains Dr Van Biljon.

Contributing on other platforms 

She was nominated and elected for this position during the SAPBA conference that was held at the Future Africa campus in Pretoria. Besides serving on the executive committee of SAPBA, she is involved with and are serving on several other platforms where she is making a difference in the plant breeding industry. 

Dr Van Biljon collaborates on wheat quality with researchers in the wheat industry at the Agricultural Research Council (ARC), Small Grain in Bethlehem. “I’m also a committee member of the Cereal Science and Technology – Southern African Association.”

For the past two years, she has been giving online lectures on biofortification as part of a National Research Foundation/Swedish Foundation for International Cooperation in Research and Higher Education (STINT/NRF) group in Alnarp in Sweden. However, she states a working visit to the Nanjing Agricultural University in Nanjing, China as one of her biggest highlights.


Today, I want to help students see the difference plant breeding can make in crop improvement and food security.


The difference plant breeding can make 

Although genetics was one of her passions as student, she later found herself as a flower breeder at the ARC Roodeplaat. Years later, she returned to the UFS to complete her PhD in Plant Breeding. And today, she wants to help students see the difference plant breeding can make in crop improvement and food security.

Currently, Dr Van Biljon is focusing on her research, which is the study of the nutritional value of various crops by determining, among others, the beta-carotene values of butternuts, the starch quality of wheat, and the tryptophan value of quality protein maize. “I also look at the influence of abiotic stress on the crop quality and nutritional value of various crops,” she adds.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept