Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 September 2020 | Story Leonie Bolleurs | Photo Supplied
Dr Angeline van Biljon was elected as a member of the Southern African Plant Breeders’ Association (SAPBA) executive committee.

Ever wondered how seedless fruit such as lemons, watermelons, and grapes came to be?

Dr Angeline van Biljon, Senior Lecturer in the Department of Plant Sciences at the University of the Free State (UFS), was recently elected as a member of the Southern African Plant Breeders’ Association (SAPBA) executive committee where she will serve until March 2022.

She says it is a privilege to be a member of the team. “It is an opportunity to bring plant breeding to the community so that more people can know about the subject. For example, that seedless lemons, grapes, and watermelons does not just happen; that orange sweet potatoes with high beta-carotene are bred to combat vitamin A deficiency; and that wheat quality is important to make a good loaf of bread.”

This position also brings with it the possibility for her students to work closely with people in industry. “Other members of the committee are breeders in seed and breeding companies,” explains Dr Van Biljon.

Contributing on other platforms 

She was nominated and elected for this position during the SAPBA conference that was held at the Future Africa campus in Pretoria. Besides serving on the executive committee of SAPBA, she is involved with and are serving on several other platforms where she is making a difference in the plant breeding industry. 

Dr Van Biljon collaborates on wheat quality with researchers in the wheat industry at the Agricultural Research Council (ARC), Small Grain in Bethlehem. “I’m also a committee member of the Cereal Science and Technology – Southern African Association.”

For the past two years, she has been giving online lectures on biofortification as part of a National Research Foundation/Swedish Foundation for International Cooperation in Research and Higher Education (STINT/NRF) group in Alnarp in Sweden. However, she states a working visit to the Nanjing Agricultural University in Nanjing, China as one of her biggest highlights.


Today, I want to help students see the difference plant breeding can make in crop improvement and food security.


The difference plant breeding can make 

Although genetics was one of her passions as student, she later found herself as a flower breeder at the ARC Roodeplaat. Years later, she returned to the UFS to complete her PhD in Plant Breeding. And today, she wants to help students see the difference plant breeding can make in crop improvement and food security.

Currently, Dr Van Biljon is focusing on her research, which is the study of the nutritional value of various crops by determining, among others, the beta-carotene values of butternuts, the starch quality of wheat, and the tryptophan value of quality protein maize. “I also look at the influence of abiotic stress on the crop quality and nutritional value of various crops,” she adds.

News Archive

Research helps farmers save with irrigation
2017-02-15

Description: Irrigation research Tags: Irrigation research

Marcill Venter, lecturer in the Department of
Agricultural Economics at the University of the
Free State, has developed the mathematical
programming system, Soil Water Irrigation
Planning and Energy Management in order to
determine irrigation pump hours.
Photo: Rulanzen Martin

Her advice to farmers is that they should make sure they are aware of the total cost (investment and operating costs) of an irrigation system. In most cases the investment cost is low, but the operating cost over the lifetime of the system is high.

“It is very important to have a look at the total cost and to install the most economic system,” says Marcill Venter, lecturer at the University of the Free State (UFS), who has done research on the economic sustainability of water-pipe systems.

Irrigation systems important components for farming
This research comes at a time when many farmers are relying on their irrigation systems due to persistent drought and low rainfall during 2016. South Africa has also experienced an abnormal increase in electricity tariffs in recent years. Due to tariff increases which threaten the future profitability of irrigation producers, the Water Research Commission (WRC) has launched and financed a project on the sustainable management of irrigation farming systems. “I had the opportunity to work on the project as a researcher,” says Venter.

The heart of every irrigation system is the water pipes that bring life to crops and livestock, and this is what Venter’s research is about. “Water pipes are part of the whole design of irrigation systems. The design of the system impact certain factors which determine the investment and operating costs,” she says.

Mathematical system to help farmers
Venter and Professor Bennie Grové, also from the Department of Agricultural Economics at the UFS, designed the Soil Water Irrigation Planning and Energy Management (SWIP-E) programming model as part of the WRC’s project, as well as for her master’s degree. “The model determines irrigation pump hours through a daily groundwater budget, while also taking into account the time-of-use electricity tariff structure and change in kilowatt requirements arising from the main-line design,” says Venter. The model is a non-linear programming model programmed in General Algebraic Modeling System (GAMS).

Design of irrigation system important for sustainability

The main outcome of the study is that the time-of-use electricity tariff structure (Ruraflex) is always more profitable than the flat-rate structure (Landrate). The interaction between the management and design of a system is crucial, as it determines the investment and operating costs. Irrigation designers should take the investment and operating cost of a system into account during the design process. The standards set by the South African Irrigation Institute (SAII) should also be controlled and revised.

Water-pipe thickness plays major role in cost cuts
There is interaction between water-pipe thickness, investment and operating costs. When thinner water pipes are installed, it increases the friction in the system as well as the kilowatt usage. A high kilowatt increases the operating cost, but the use of thinner water pipes lowers the investment cost. Thicker water pipes therefore lower the friction and the kilowatt requirements, which leads to lower operating costs, but thicker pipes have a higher investment cost. “It is thus crucial to look at the total cost (operating and investment cost) when investing in a new system. Farmers should invest in the system with the lowest total cost,” says Venter.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept