Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2020 | Story Leonie Bolleurs | Photo Supplied
Participants in the third Amazing Race travelled through the African continent, experiencing Africa’s roots and its rich, vibrant, and diverse cultures

During the third Amazing Race presented by Organisational Development and Employee Wellness, staff had the opportunity to virtually travel through Africa. 

The aim of the race with the theme, A Journey through Africa, was to celebrate South Africa and Africa’s roots and its rich, vibrant, and diverse cultures. 

Natasha Nel, organisational development specialist and organiser of the race, says they wanted to give the 13 participating teams the opportunity to explore, learn, create, and be challenged together as they travel to some of the most interesting and exotic locations around Africa, but also in South Africa. 

Here in our own country, teams had the opportunity to experience our culture as well as the diversity of beliefs and traditions.


Here in our own country, teams had the opportunity to experience our culture as well as the diversity of beliefs and traditions.

Interactive and exciting event

Nel says staff could join the race in the convenience of their personal working space via a Zoom meeting. “They only needed to download the game that was specifically tailored for the UFS.” 

“It was a fun, interactive, and exciting event. In this unique adventure, it was interesting to see how teams worked together, made decisions, and also thought outside the box during the challenges,” she says.

Nel explains that teams were requested to take photos, answer questions, and make decisions unique to Africa and their culture. Some decisions and answers were timed. They also had to decide where they wanted to travel, but each decision and option had its costs, reward, and challenge linked to it.

We are the champions

Chanel Lewis, Aneke Kruger, Runé van der Merwe, and Lischen du Randt walked away as winners of the third Amazing Race. 

By participating in this race, the university has sponsored 13 breakfasts for the Community Chest of South Africa (this organisation’s mission is to inspire and facilitate community giving for community enhancement).


News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept