Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2020 | Story Leonie Bolleurs | Photo Supplied
Participants in the third Amazing Race travelled through the African continent, experiencing Africa’s roots and its rich, vibrant, and diverse cultures

During the third Amazing Race presented by Organisational Development and Employee Wellness, staff had the opportunity to virtually travel through Africa. 

The aim of the race with the theme, A Journey through Africa, was to celebrate South Africa and Africa’s roots and its rich, vibrant, and diverse cultures. 

Natasha Nel, organisational development specialist and organiser of the race, says they wanted to give the 13 participating teams the opportunity to explore, learn, create, and be challenged together as they travel to some of the most interesting and exotic locations around Africa, but also in South Africa. 

Here in our own country, teams had the opportunity to experience our culture as well as the diversity of beliefs and traditions.


Here in our own country, teams had the opportunity to experience our culture as well as the diversity of beliefs and traditions.

Interactive and exciting event

Nel says staff could join the race in the convenience of their personal working space via a Zoom meeting. “They only needed to download the game that was specifically tailored for the UFS.” 

“It was a fun, interactive, and exciting event. In this unique adventure, it was interesting to see how teams worked together, made decisions, and also thought outside the box during the challenges,” she says.

Nel explains that teams were requested to take photos, answer questions, and make decisions unique to Africa and their culture. Some decisions and answers were timed. They also had to decide where they wanted to travel, but each decision and option had its costs, reward, and challenge linked to it.

We are the champions

Chanel Lewis, Aneke Kruger, Runé van der Merwe, and Lischen du Randt walked away as winners of the third Amazing Race. 

By participating in this race, the university has sponsored 13 breakfasts for the Community Chest of South Africa (this organisation’s mission is to inspire and facilitate community giving for community enhancement).


News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept