Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 September 2020
Class of 2020

Dear Graduand

VIRTUAL GRADUATION CEREMONIES, 6-9 OCTOBER 2020

The COVID-19 pandemic has caused immense disruption in many aspects of our lives, both in South Africa and abroad. Higher education institutions throughout the world were not exempt from the effects of the deadly virus. In South Africa in particular, most institutions were forced to suspend academic programmes and quickly found themselves transitioning academic programmes from the classroom to online learning platforms. 

We also postponed graduation ceremonies in the hope that the situation would improve in time. Unfortunately, the situation has not improved, and as COVID-19 continues to present uncertainties and public health concerns, we have made the decision not to present our face-to-face graduation ceremonies on the Bloemfontein and Qwaqwa Campuses.  

On the other hand, the pandemic has propelled innovation and creativity; we are delighted at the possibilities offered by technology to allow us to honour and preserve traditions that define the higher education experience. Your graduation and the conferring of your degree should be an unforgettable moment in your life. Therefore, we are making every effort to ensure that even during these unusual times, you are celebrated.  You have committed countless hours of dedicated work to earn your degree, and we would like to support you in celebrating this momentous occasion. 
Therefore, as an alternative, we are hosting virtual graduation ceremonies scheduled to be broadcasted from 6 to 9 October 2020 at 10:00 daily: 

• 6 October 2020: Bloemfontein Campus (April 2020, all ceremonies)
• 7 October 2020: Qwaqwa Campus (May 2020, all ceremonies)
• 8 October 2020: Bloemfontein Campus (June 2020 undergraduate and honours ceremonies)
• 9 October 2020: Bloemfontein Campus (June 2020 master’s and PhD qualifications)

The institution is aware of and sensitive to the increased need to have your qualification certificates.  We therefore wish to inform our graduates that certificates will be available and released immediately after the conferral ceremonies. It is our utmost priority to ensure your health and safety. As a result, certificates will be available and released via courier services at no cost to you and within convenient measures in adherence to the COVID-19 prescriptions. Communication regarding the issuing of the certificates will follow in due course.
 
Your disappointment at not having a face-to-face ceremony is understandable – however, it is extremely important that we do what is in the best interest of our students, staff, and community. 

Congratulations to all our graduates and may you have continued success in all your endeavours! 

We look forward to honouring you at the virtual graduation ceremony. 


News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept