Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2020 | Story Khiba Aubrey Teboho | Photo Supplied
Khiba Aubrey Teboho.

Transformation at the university must be reflected in all dimensions of the institution, such as leadership, governance, and management, student backgrounds such as practical access and academic excellence, equity in staffing, institutional cultures, and inclusive teaching and learning. I acknowledge that this is not an easy task for universities, and that is why I would urge the student population to exercise patience on some of the matters they bring to the institution. However, they should also not be used by the university as a crutch in undertaking its obligation to transform and promote integration, non-discrimination, and inclusivity across all levels –  not only within the university, but also within the local space where the university finds itself, as we know the history of the institution. We have come a long way and there is still more to do, things to change, but we have to give credit where it is due. I still appeal to the institution to do more, because for some students it is the place that will give them the capability to fight poverty, to prosper, to influence change in society, and to change their lives as well as the lives of their families.

The redress of historical inequalities between historically white and historically black universities – it is a challenge for all universities, and we have come a long way to resolve this. With a new culture of students comes a new challenge, such as the funding challenges that poor and middle-income students are constantly facing. These are some of the recurring issues faced by students continually, requiring a solution that does not impoverish the poor even more. Universities must become spaces for transformation, rather than merely being transformed spaces. It is the transformative development through which students come to understand social justice properly, which certifies that students will go on to promote social justice in the wider society. While universities have long been sites of personal growth and transformation for their students, the impact of the transformative power of these places and the important transformational goal of generating graduates who are engaged citizens working for social justice must not be overlooked, particularly in the literature of transformation at the university.

Similarly, what is questioned by the students themselves is the relevance of what is taught at universities, how students are prepared through the knowledge and skills 'transmitted' to them for life in a South African context, and in what sense graduates are prepared to contribute to the advancement of society after the completion of their degrees. It cannot be that in this era we produce graduates who are job seekers, especially considering the status our country is in. This should be carefully considered in the development of the university’s curriculum and in its strategies.

It is only through an epistemic revolution in institutional culture that universities can become spaces that foster the development of civic-minded graduates. We cannot be relegated to just being students when it comes to the issues raised above if transformation is to take place effectively. Students must also understand that we cannot continue to do things as if it were 1976; we need to find other alternative mechanisms to voice our concerns and make an impact. At times change is not easy and it is not comfortable, but we are ready!
God bless South Afrika. Morena boloka setjhaba sa heso.

News Archive

Mineral named after UFS professor
2017-09-29

Description: Mineral tredoux Tags: International Mineralogical Association, tredouxite, Prof Marian Tredoux, Department of Geology, Barberton 

Tredouxite (white) intergrown with bottinoite (light grey),
a complex hydrous alteration product. The large host
minerals are nickel-rich silicate (grey), maybe willemseite,
and the spinel trevorite (dark grey).


More than five thousand minerals have been certified by the International Mineralogical Association (IMA). One of these minerals, tredouxite, was recently named after an academic at the University of the Free State (UFS). 

Tredouxite was named after Prof Marian Tredoux, an associate professor in the Department of Geology, to acknowledge her close to 30 years’ commitment to figuring out the geological history of the rock in which this mineral occurs. The name was chosen by the team which identified the new mineral, consisting of Dr Federica Zaccarini and Prof. Giorgio Garuti from the University of Leoben, Austria, Prof. Luca Bindi from the University of Florence, Italy, and Prof. Duncan Miller from the UFS. 

They found the mineral in the abovementioned rock from the Barberton region in Mpumalanga, in May 2017.

In the past, a mineral was also named after Marie Curie
With the exception of a few historical (pre-1800) names, a mineral is typically named either after the area where it was first found, or after its chemical composition or physical properties, or after a person. If named after a person, it has to be someone who had nothing to do with finding the mineral.

Prof Tredoux said: “As of 19 September 2017, 5292 minerals had been certified by IMA. Of these, 81 were named after women, either singly or with a near relation. Marie Curie is named twice: sklodowskite (herself) and curite (plus husband). Most of the named women are Russian geoscientists.”

Another way to assess the rarity of such a naming is to consider that fewer than 700 minerals have been named after people. Given that there are by now seven billion people on the planet, it means that a person who is granted a mineral name becomes one in 10 million of the people alive today to be honoured in such a way. To date, over a dozen minerals had been named after South Africans, three of them after women (including tredouxite).

It contains nickel, antimony and oxygen
The chemical composition of tredouxite is NiSb2O6 (nickel antimony oxide). This makes it the nickel equivalent of the magnesium mineral bystromite (MgSb2O6), described in the 1950s from the La Fortuna antimony mine in Mexico.  

“This announcement is of great academic importance: the discovery by the Italian team of a phase with that specific chemical composition will undoubtedly help me and my co-workers to better understand the origin of the rock itself,” she said. She also expressed the hope that it may raise interest in the Department of Geology and the UFS as a whole, by highlighting that world-class research is being done at the department. 

The announcement of this new mineral was published on the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification website, the Mineralogical Magazine and the European Journal of Mineralogy.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept