Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2020 | Story Khiba Aubrey Teboho | Photo Supplied
Khiba Aubrey Teboho.

Transformation at the university must be reflected in all dimensions of the institution, such as leadership, governance, and management, student backgrounds such as practical access and academic excellence, equity in staffing, institutional cultures, and inclusive teaching and learning. I acknowledge that this is not an easy task for universities, and that is why I would urge the student population to exercise patience on some of the matters they bring to the institution. However, they should also not be used by the university as a crutch in undertaking its obligation to transform and promote integration, non-discrimination, and inclusivity across all levels –  not only within the university, but also within the local space where the university finds itself, as we know the history of the institution. We have come a long way and there is still more to do, things to change, but we have to give credit where it is due. I still appeal to the institution to do more, because for some students it is the place that will give them the capability to fight poverty, to prosper, to influence change in society, and to change their lives as well as the lives of their families.

The redress of historical inequalities between historically white and historically black universities – it is a challenge for all universities, and we have come a long way to resolve this. With a new culture of students comes a new challenge, such as the funding challenges that poor and middle-income students are constantly facing. These are some of the recurring issues faced by students continually, requiring a solution that does not impoverish the poor even more. Universities must become spaces for transformation, rather than merely being transformed spaces. It is the transformative development through which students come to understand social justice properly, which certifies that students will go on to promote social justice in the wider society. While universities have long been sites of personal growth and transformation for their students, the impact of the transformative power of these places and the important transformational goal of generating graduates who are engaged citizens working for social justice must not be overlooked, particularly in the literature of transformation at the university.

Similarly, what is questioned by the students themselves is the relevance of what is taught at universities, how students are prepared through the knowledge and skills 'transmitted' to them for life in a South African context, and in what sense graduates are prepared to contribute to the advancement of society after the completion of their degrees. It cannot be that in this era we produce graduates who are job seekers, especially considering the status our country is in. This should be carefully considered in the development of the university’s curriculum and in its strategies.

It is only through an epistemic revolution in institutional culture that universities can become spaces that foster the development of civic-minded graduates. We cannot be relegated to just being students when it comes to the issues raised above if transformation is to take place effectively. Students must also understand that we cannot continue to do things as if it were 1976; we need to find other alternative mechanisms to voice our concerns and make an impact. At times change is not easy and it is not comfortable, but we are ready!
God bless South Afrika. Morena boloka setjhaba sa heso.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept