Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2020 | Story Khiba Aubrey Teboho | Photo Supplied
Khiba Aubrey Teboho.

Transformation at the university must be reflected in all dimensions of the institution, such as leadership, governance, and management, student backgrounds such as practical access and academic excellence, equity in staffing, institutional cultures, and inclusive teaching and learning. I acknowledge that this is not an easy task for universities, and that is why I would urge the student population to exercise patience on some of the matters they bring to the institution. However, they should also not be used by the university as a crutch in undertaking its obligation to transform and promote integration, non-discrimination, and inclusivity across all levels –  not only within the university, but also within the local space where the university finds itself, as we know the history of the institution. We have come a long way and there is still more to do, things to change, but we have to give credit where it is due. I still appeal to the institution to do more, because for some students it is the place that will give them the capability to fight poverty, to prosper, to influence change in society, and to change their lives as well as the lives of their families.

The redress of historical inequalities between historically white and historically black universities – it is a challenge for all universities, and we have come a long way to resolve this. With a new culture of students comes a new challenge, such as the funding challenges that poor and middle-income students are constantly facing. These are some of the recurring issues faced by students continually, requiring a solution that does not impoverish the poor even more. Universities must become spaces for transformation, rather than merely being transformed spaces. It is the transformative development through which students come to understand social justice properly, which certifies that students will go on to promote social justice in the wider society. While universities have long been sites of personal growth and transformation for their students, the impact of the transformative power of these places and the important transformational goal of generating graduates who are engaged citizens working for social justice must not be overlooked, particularly in the literature of transformation at the university.

Similarly, what is questioned by the students themselves is the relevance of what is taught at universities, how students are prepared through the knowledge and skills 'transmitted' to them for life in a South African context, and in what sense graduates are prepared to contribute to the advancement of society after the completion of their degrees. It cannot be that in this era we produce graduates who are job seekers, especially considering the status our country is in. This should be carefully considered in the development of the university’s curriculum and in its strategies.

It is only through an epistemic revolution in institutional culture that universities can become spaces that foster the development of civic-minded graduates. We cannot be relegated to just being students when it comes to the issues raised above if transformation is to take place effectively. Students must also understand that we cannot continue to do things as if it were 1976; we need to find other alternative mechanisms to voice our concerns and make an impact. At times change is not easy and it is not comfortable, but we are ready!
God bless South Afrika. Morena boloka setjhaba sa heso.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept