Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2020 | Story Khiba Aubrey Teboho | Photo Supplied
Khiba Aubrey Teboho.

Transformation at the university must be reflected in all dimensions of the institution, such as leadership, governance, and management, student backgrounds such as practical access and academic excellence, equity in staffing, institutional cultures, and inclusive teaching and learning. I acknowledge that this is not an easy task for universities, and that is why I would urge the student population to exercise patience on some of the matters they bring to the institution. However, they should also not be used by the university as a crutch in undertaking its obligation to transform and promote integration, non-discrimination, and inclusivity across all levels –  not only within the university, but also within the local space where the university finds itself, as we know the history of the institution. We have come a long way and there is still more to do, things to change, but we have to give credit where it is due. I still appeal to the institution to do more, because for some students it is the place that will give them the capability to fight poverty, to prosper, to influence change in society, and to change their lives as well as the lives of their families.

The redress of historical inequalities between historically white and historically black universities – it is a challenge for all universities, and we have come a long way to resolve this. With a new culture of students comes a new challenge, such as the funding challenges that poor and middle-income students are constantly facing. These are some of the recurring issues faced by students continually, requiring a solution that does not impoverish the poor even more. Universities must become spaces for transformation, rather than merely being transformed spaces. It is the transformative development through which students come to understand social justice properly, which certifies that students will go on to promote social justice in the wider society. While universities have long been sites of personal growth and transformation for their students, the impact of the transformative power of these places and the important transformational goal of generating graduates who are engaged citizens working for social justice must not be overlooked, particularly in the literature of transformation at the university.

Similarly, what is questioned by the students themselves is the relevance of what is taught at universities, how students are prepared through the knowledge and skills 'transmitted' to them for life in a South African context, and in what sense graduates are prepared to contribute to the advancement of society after the completion of their degrees. It cannot be that in this era we produce graduates who are job seekers, especially considering the status our country is in. This should be carefully considered in the development of the university’s curriculum and in its strategies.

It is only through an epistemic revolution in institutional culture that universities can become spaces that foster the development of civic-minded graduates. We cannot be relegated to just being students when it comes to the issues raised above if transformation is to take place effectively. Students must also understand that we cannot continue to do things as if it were 1976; we need to find other alternative mechanisms to voice our concerns and make an impact. At times change is not easy and it is not comfortable, but we are ready!
God bless South Afrika. Morena boloka setjhaba sa heso.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept