Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 April 2021 | Story Dr Chantell Witten | Photo Supplied
Dr Chantell Witten is from the Division of Health Professions Education.

A decade ago, Rob Nixon, a professor in the humanities and environment studies at Princeton University in the US, introduced the concept of slow violence in the context of climate change and environmentalism, explaining slow violence as violence that occurs gradually and out of sight, a violence of delayed destruction that is dispersed across time and space, an attritional violence that is typically not viewed as violence, at all. While profound, Professor Nixon’s concept of ”out-of-sight violence” and ”violence of delayed destruction” was challenged by Professor Thom Davies from the University of Nottingham in the UK who urged scholars to instead ask the question: ”out of sight to whom?” He argued that structural inequality mutated into noxious instances of immediate slow but pervasive violence by those who have endured toxic landscapes and unhealthy physical environments.

Reflecting on the impact of COVID-19 in the context of persistent hunger in South Africa’s cities, Dr Gareth Haysom from the University of Cape Town, challenged us as society to recognise the ”slow violence“ of hunger and food insecurity that are also often “experienced in private, incremental and accretive ways that are often invisible”. But as urged by Professor Davies, the question of child hunger and malnutrition in South Africa is really, to whom is this hunger and malnutrition invisible?

Malnutrition and its debilitating consequences have been studied and known about as far back as the 1950s. In 1976, Stoch and Smyth from the then Child Psychiatric Unit and Department of Paediatrics and Child Health at the University of Cape Town reported on a 15-year developmental study conducted from 1955 to 1970 on the effects of severe undernutrition during infancy on subsequent physical growth and intellectual functioning on coloured children from the Cape Flats concluded that the effects of severe undernutrition during infancy on subsequent brain growth and intellectual development confirmed gross retardation of intellect in the undernourished group when compared to the controls. Furthermore, the study concluded that given the abnormal performance of the control group that there was much evidence to suggest that the controls were also suboptimal in terms of nutritional status and intellectual functioning. This means that in general the nutritional status of coloured children on the Cape Flats was poor. Fast forward to 2021, and child nutrition in South Africa is still sub-optimal.

South Africa’s nutrition indicators have worsened

The most recent data from 2016 National Demographic Health Survey showed that 27% of children under the age of five years are stunted or too short for their age. This equates to more than 1.5 million children whose health and development is compromised and who have a lower chance of reaching their full potential even into their adult years. While many countries of the same economic development status have improved their nutrition indicators, South Africa’s nutrition indicators have worsened. South Africa has been identified as one of the countries with high levels of multiple forms of malnutrition manifested in high levels of stunting, childhood obesity and multiple micronutrient deficiencies, the most notable being vitamin A deficiency. These multiple forms of malnutrition cast a long shadow of ill-health and delayed development. of children, robbing them of quality of life and years of life in their childhood and their adult years. Malnutrition has a double cost on quality of life and additional health costs consuming resources that could have been spent on better food.

The right to have access to sufficient food is embedded in Section 26 and 27 of our Constitution and the right to adequate nutrition for children is stipulated in section 28. The Bill of Rights enshrined in the Constitution states that “every citizen has a right to have access to sufficient food, water and social security” and that “the State must take reasonable legislative and other measures, within its available resources, to achieve the progressive realisation of this right”. Before the onslaught of COVID-19, we as health and social care professionals, have been acutely aware that a significant number of South Africans do not have access to sufficient food and go hungry on a daily basis. Malnutrition is well-documented in South Africa and unfortunately is progressively getting worse.

SA has not prioritised children or the realisation of their human rights to food and nutrition

Better nutrition can only be achieved when food and care are available to young children but in the context of rising food prices, limited maternal support and a difficult psychosocial environment, mothers are not able to provide their children with a health-enabling environment. Our high levels of stunting and obesity levels reflect the chronic situation of poor-quality and inadequate diets coupled with poor caring practices. While these poor dietary practices are often individualised and focused on mothers, there are many systemic and structural barriers for families to access affordable and nutritious diets. The food environment is shaped by a profit-centred food system that comes at the cost of people’s health and well-being. Children have always being the prime focus of the food industry, from the promotion of maternal supplements to improved maternal nutrition for the developing foetus, to the promotion of infant formula as a convenient and easy-to-use alternative to breastfeeding, to the manipulative marketing of foods for and to children.

Child nutrition has become a global tracking indicator for both human and economic development. Sadly, our lack of progress over the past 20 years clearly illustrates that we, as a country, have not prioritised children or the realisation of their human rights to food and nutrition. The findings of the 2020 Child Gauge gives us, as a country, the opportunity to stop the violations of children’s rights and to end the slow violence of child malnutrition.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept