Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 April 2021 | Story Dr Chantell Witten | Photo Supplied
Dr Chantell Witten is from the Division of Health Professions Education.

A decade ago, Rob Nixon, a professor in the humanities and environment studies at Princeton University in the US, introduced the concept of slow violence in the context of climate change and environmentalism, explaining slow violence as violence that occurs gradually and out of sight, a violence of delayed destruction that is dispersed across time and space, an attritional violence that is typically not viewed as violence, at all. While profound, Professor Nixon’s concept of ”out-of-sight violence” and ”violence of delayed destruction” was challenged by Professor Thom Davies from the University of Nottingham in the UK who urged scholars to instead ask the question: ”out of sight to whom?” He argued that structural inequality mutated into noxious instances of immediate slow but pervasive violence by those who have endured toxic landscapes and unhealthy physical environments.

Reflecting on the impact of COVID-19 in the context of persistent hunger in South Africa’s cities, Dr Gareth Haysom from the University of Cape Town, challenged us as society to recognise the ”slow violence“ of hunger and food insecurity that are also often “experienced in private, incremental and accretive ways that are often invisible”. But as urged by Professor Davies, the question of child hunger and malnutrition in South Africa is really, to whom is this hunger and malnutrition invisible?

Malnutrition and its debilitating consequences have been studied and known about as far back as the 1950s. In 1976, Stoch and Smyth from the then Child Psychiatric Unit and Department of Paediatrics and Child Health at the University of Cape Town reported on a 15-year developmental study conducted from 1955 to 1970 on the effects of severe undernutrition during infancy on subsequent physical growth and intellectual functioning on coloured children from the Cape Flats concluded that the effects of severe undernutrition during infancy on subsequent brain growth and intellectual development confirmed gross retardation of intellect in the undernourished group when compared to the controls. Furthermore, the study concluded that given the abnormal performance of the control group that there was much evidence to suggest that the controls were also suboptimal in terms of nutritional status and intellectual functioning. This means that in general the nutritional status of coloured children on the Cape Flats was poor. Fast forward to 2021, and child nutrition in South Africa is still sub-optimal.

South Africa’s nutrition indicators have worsened

The most recent data from 2016 National Demographic Health Survey showed that 27% of children under the age of five years are stunted or too short for their age. This equates to more than 1.5 million children whose health and development is compromised and who have a lower chance of reaching their full potential even into their adult years. While many countries of the same economic development status have improved their nutrition indicators, South Africa’s nutrition indicators have worsened. South Africa has been identified as one of the countries with high levels of multiple forms of malnutrition manifested in high levels of stunting, childhood obesity and multiple micronutrient deficiencies, the most notable being vitamin A deficiency. These multiple forms of malnutrition cast a long shadow of ill-health and delayed development. of children, robbing them of quality of life and years of life in their childhood and their adult years. Malnutrition has a double cost on quality of life and additional health costs consuming resources that could have been spent on better food.

The right to have access to sufficient food is embedded in Section 26 and 27 of our Constitution and the right to adequate nutrition for children is stipulated in section 28. The Bill of Rights enshrined in the Constitution states that “every citizen has a right to have access to sufficient food, water and social security” and that “the State must take reasonable legislative and other measures, within its available resources, to achieve the progressive realisation of this right”. Before the onslaught of COVID-19, we as health and social care professionals, have been acutely aware that a significant number of South Africans do not have access to sufficient food and go hungry on a daily basis. Malnutrition is well-documented in South Africa and unfortunately is progressively getting worse.

SA has not prioritised children or the realisation of their human rights to food and nutrition

Better nutrition can only be achieved when food and care are available to young children but in the context of rising food prices, limited maternal support and a difficult psychosocial environment, mothers are not able to provide their children with a health-enabling environment. Our high levels of stunting and obesity levels reflect the chronic situation of poor-quality and inadequate diets coupled with poor caring practices. While these poor dietary practices are often individualised and focused on mothers, there are many systemic and structural barriers for families to access affordable and nutritious diets. The food environment is shaped by a profit-centred food system that comes at the cost of people’s health and well-being. Children have always being the prime focus of the food industry, from the promotion of maternal supplements to improved maternal nutrition for the developing foetus, to the promotion of infant formula as a convenient and easy-to-use alternative to breastfeeding, to the manipulative marketing of foods for and to children.

Child nutrition has become a global tracking indicator for both human and economic development. Sadly, our lack of progress over the past 20 years clearly illustrates that we, as a country, have not prioritised children or the realisation of their human rights to food and nutrition. The findings of the 2020 Child Gauge gives us, as a country, the opportunity to stop the violations of children’s rights and to end the slow violence of child malnutrition.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept