Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 April 2021 | Story Andre Damons | Photo istock
The Easter weekend runs the risk of being a major catalyst for the third wave and people’s behaviour will be the primary driver of transmission for the third wave.

Similar trends as during the festive season of 2020 – when the behaviour of people was driving COVID-19 transmissions and played a role in the second wave – have emerged due to the Easter holidays, and may contribute to a third wave. 
“This means that we can already anticipate gatherings and a higher rate of travel during the next three weeks. As a result of this as well as non-adherence to the non-pharmaceutical interventions, we can anticipate this event to serve as a catalyst for transmission.” 

“If nothing is done to prevent this, it is anticipated that the Free State will see a steady increase and a potential third wave between 17 April and 26 June,” says Herkulaas Combrink, the interim Director of the UFS Initiatives for Digital Futures and PhD candidate in Computer Science at the University of Pretoria (UP).

The Easter weekend runs the risk of being a major catalyst for the third wave

According to him, the vulnerability and population density dynamics in each province, the behaviour of people, and the social norms between communities must be taken into consideration to contextualise the impact of Easter on disease transmission – especially when looking at SARS-CoV-2.

For the Free State, the Easter weekend runs the risk of being a major catalyst that will lead up to the third wave, says Combrink. “If no interventions are put in place and people do not adhere to non-pharmaceutical interventions to mitigate the spread of the disease, then we will see a steady climb and increase in cases up until that time. This means that the behaviour of people will be the primary driver of transmission for the third wave.”

Reducing the severity of the third wave

According to Combrink, who is involved in risk communication and vaccine analytics with other members of the UFS, we may be able to reduce the severity of the third wave if the variant remains the same and the vaccination roll-out plan is in full effect. It will also help if the correct number of people are vaccinated, the general population adheres to PPE and mitigation strategies, and people practise the appropriate behaviour as indicated in all official COVID-19 communication, including the UFS COVID-19 information page.  

According to Prof Felicity Burt and Dr Sabeehah Vawda, both virology experts in the UFS Division of Virology, the current vaccination programme is aimed at reducing the severity of the disease among health-care workers. Prevention of further waves of infection through vaccination will require sufficient coverage to induce at least 70% herd immunity in the country. Currently, no country has achieved that level of herd immunity through vaccine programmes – this is the long-term goal of vaccination. 

“Irrespective of the government’s vaccination programmes and schedules and a virus that may mutate and perhaps become more virulent, the fundamental ways to protect yourself remain unchanged, namely social distancing, wearing of masks, and regular hand washing. People need to realise that this ‘new normal’ is going to be with us for a while and remains the best defence against all SARS-CoV-2 viruses and even provides protection against other respiratory pathogens.”

Vaccines and mutations

The exact frequency of mutations differs between different types of viruses, but generally, SARS-CoV-2 is known to have a slower ‘mutation rate’ than other RNA viruses because of its built-in ‘proofreading’ enzyme. The true mutation rate of a virus is difficult to measure, as the majority of mutations will be lethal to the virus. Irrespective, very few have actually resulted in clinical impact. 

“This highlights the rather gradual process of mutation, so vaccines should remain effective or at least partially effective in the near future, as they elicit antibodies that target different parts of the virus. Continuous surveillance of SARS-CoV-2 is necessary and ongoing to monitor for changes that may impact vaccines and diagnostic tests,” the experts say.

According to Prof Burt and Dr Vawda, scientists are continuously monitoring the situation to detect if the current vaccines would remain effective and to try to adjust them accordingly. How or when the virus will mutate in a clinically significant way is unknown, so at this point, the current vaccines have been shown to be effective against severe disease and hence have application in reducing significant disease. 

“There remains a lot unknown about the extent of protection and the duration of protection, and it is obviously hoped that the vaccine’s immune response in the human body would be able to provide at least some protection or decrease the possibility of severe disease even against potentially newer variants.”

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept