Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 April 2021 | Story Andre Damons | Photo istock
The Easter weekend runs the risk of being a major catalyst for the third wave and people’s behaviour will be the primary driver of transmission for the third wave.

Similar trends as during the festive season of 2020 – when the behaviour of people was driving COVID-19 transmissions and played a role in the second wave – have emerged due to the Easter holidays, and may contribute to a third wave. 
“This means that we can already anticipate gatherings and a higher rate of travel during the next three weeks. As a result of this as well as non-adherence to the non-pharmaceutical interventions, we can anticipate this event to serve as a catalyst for transmission.” 

“If nothing is done to prevent this, it is anticipated that the Free State will see a steady increase and a potential third wave between 17 April and 26 June,” says Herkulaas Combrink, the interim Director of the UFS Initiatives for Digital Futures and PhD candidate in Computer Science at the University of Pretoria (UP).

The Easter weekend runs the risk of being a major catalyst for the third wave

According to him, the vulnerability and population density dynamics in each province, the behaviour of people, and the social norms between communities must be taken into consideration to contextualise the impact of Easter on disease transmission – especially when looking at SARS-CoV-2.

For the Free State, the Easter weekend runs the risk of being a major catalyst that will lead up to the third wave, says Combrink. “If no interventions are put in place and people do not adhere to non-pharmaceutical interventions to mitigate the spread of the disease, then we will see a steady climb and increase in cases up until that time. This means that the behaviour of people will be the primary driver of transmission for the third wave.”

Reducing the severity of the third wave

According to Combrink, who is involved in risk communication and vaccine analytics with other members of the UFS, we may be able to reduce the severity of the third wave if the variant remains the same and the vaccination roll-out plan is in full effect. It will also help if the correct number of people are vaccinated, the general population adheres to PPE and mitigation strategies, and people practise the appropriate behaviour as indicated in all official COVID-19 communication, including the UFS COVID-19 information page.  

According to Prof Felicity Burt and Dr Sabeehah Vawda, both virology experts in the UFS Division of Virology, the current vaccination programme is aimed at reducing the severity of the disease among health-care workers. Prevention of further waves of infection through vaccination will require sufficient coverage to induce at least 70% herd immunity in the country. Currently, no country has achieved that level of herd immunity through vaccine programmes – this is the long-term goal of vaccination. 

“Irrespective of the government’s vaccination programmes and schedules and a virus that may mutate and perhaps become more virulent, the fundamental ways to protect yourself remain unchanged, namely social distancing, wearing of masks, and regular hand washing. People need to realise that this ‘new normal’ is going to be with us for a while and remains the best defence against all SARS-CoV-2 viruses and even provides protection against other respiratory pathogens.”

Vaccines and mutations

The exact frequency of mutations differs between different types of viruses, but generally, SARS-CoV-2 is known to have a slower ‘mutation rate’ than other RNA viruses because of its built-in ‘proofreading’ enzyme. The true mutation rate of a virus is difficult to measure, as the majority of mutations will be lethal to the virus. Irrespective, very few have actually resulted in clinical impact. 

“This highlights the rather gradual process of mutation, so vaccines should remain effective or at least partially effective in the near future, as they elicit antibodies that target different parts of the virus. Continuous surveillance of SARS-CoV-2 is necessary and ongoing to monitor for changes that may impact vaccines and diagnostic tests,” the experts say.

According to Prof Burt and Dr Vawda, scientists are continuously monitoring the situation to detect if the current vaccines would remain effective and to try to adjust them accordingly. How or when the virus will mutate in a clinically significant way is unknown, so at this point, the current vaccines have been shown to be effective against severe disease and hence have application in reducing significant disease. 

“There remains a lot unknown about the extent of protection and the duration of protection, and it is obviously hoped that the vaccine’s immune response in the human body would be able to provide at least some protection or decrease the possibility of severe disease even against potentially newer variants.”

News Archive

UFS involved in project to light up the townships
2006-06-06

The parties involved with the project are from the left: Prof Hendrik Swart (Departmental Chairperson of the UFS Department of Physics), Dr Thembela Hillie (CSIR), Prof Neerich Revaprasadu (Department of Chemistry at the University of Zululand) and Dr Wynand Steyn (CSIR).

UFS involved in project that could light up the townships   

The University of the Free State’s (UFS) Department of Physics is involved with a project that could make life easier in the townships through the use of artificial light.

“The project is based on the use of sunlight to activate nano material in for example cement and paint during the day. At night the cement or paint can then radiate light,” said Prof Hendrik Swart, Departmental Chairperson of the UFS Department of Physics.

According to Prof Swart an amount of R3,9 million has been made available by the Council for Scientific and Industrial Research (CSIR) for the further development of the project.   

Prof Swart visited the University of Florida in America in 1995 for a year where he researched luminescent phosphor material that is suitable for flat panel television screens.  The red, green and blue spots on the television screens originate from these kinds of phosphor materials.  “At that stage plasma television screens were only a dream.  Today it is sold everywhere,” said Prof Swart. 

“Upon my return I started a research group at the UFS which investigated the degrading of phosphor material.  We also started to concentrate on the effectiveness of nano phosphors.  In the mean time our cooperation with the Americans was strengthened with follow-up visits to America of my colleagues, Prof Koos Terblans and Mr Martin Ntwaeaborwa,” said Prof Swart.

“Nano phosphors are basically luminescent powders that consist of particles that are 1 millionth of a millimetre.  These particles can provide light as soon as they are illuminated with, for instance, sunlight.  The amount of time these particles can provide light, is determined by the impurities in the material,” said Prof Swart.

According to Prof Swart nano particles are developed and linked to infrastructure materials in order for these materials to be excited during the day by sunlight and then it emits light during night time.

“The nano material is of such a nature that it can be mixed with materials, such as paint or cement. The yellow lines of roads can for example emit light in a natural way during night time,” said Prof Swart.

About a year ago Prof Swart and Dr Thembela Hillie, a former Ph D-student of the UFS Department of Physics, had discussions with Prof Neerich Revaprasadu from the University of Zululand and the CSIR about the possibility of mixing these nano phosphor particles with other materials that can be used as light sources in the building of roads and houses.

“Prof Revaprasadu is also actively involved in the research of nano materials.  Our efforts resulted in the CSIR approving the further extension of the project,” said Prof Swart.   

“The UFS and the University of Zululand are currently busy investigating ways to extend the light emitting time,” said Prof Swart.  

“There are eight M Sc and Ph D-students from the UFS and about five students from the University of Zululand working on this research project.  The Department of Physics at the Qwaqwa Campus of the UFS, with Francis Dejene as subject head, is also involved with the project,” said Prof Swart.

According to Prof Swart the further applications of nano materials are unlimited.  “Children whose parents cannot afford electricity can for instance leave any object such as a lamp, that is covered with these phosphor particles, in the sun during the day and use it at night as a light for study purposes,” said Prof Swart.

According to Prof Swart the further extension of the project will take about two years.  “During this time we want to determine how the effectiveness of the phosphors can be increased.  Discussions with the government and other role players for the possible implementation of the project are also part of our planning,” said Prof Swart.


Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
6 June 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept