Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 April 2021 | Story Andre Damons | Photo istock
The Easter weekend runs the risk of being a major catalyst for the third wave and people’s behaviour will be the primary driver of transmission for the third wave.

Similar trends as during the festive season of 2020 – when the behaviour of people was driving COVID-19 transmissions and played a role in the second wave – have emerged due to the Easter holidays, and may contribute to a third wave. 
“This means that we can already anticipate gatherings and a higher rate of travel during the next three weeks. As a result of this as well as non-adherence to the non-pharmaceutical interventions, we can anticipate this event to serve as a catalyst for transmission.” 

“If nothing is done to prevent this, it is anticipated that the Free State will see a steady increase and a potential third wave between 17 April and 26 June,” says Herkulaas Combrink, the interim Director of the UFS Initiatives for Digital Futures and PhD candidate in Computer Science at the University of Pretoria (UP).

The Easter weekend runs the risk of being a major catalyst for the third wave

According to him, the vulnerability and population density dynamics in each province, the behaviour of people, and the social norms between communities must be taken into consideration to contextualise the impact of Easter on disease transmission – especially when looking at SARS-CoV-2.

For the Free State, the Easter weekend runs the risk of being a major catalyst that will lead up to the third wave, says Combrink. “If no interventions are put in place and people do not adhere to non-pharmaceutical interventions to mitigate the spread of the disease, then we will see a steady climb and increase in cases up until that time. This means that the behaviour of people will be the primary driver of transmission for the third wave.”

Reducing the severity of the third wave

According to Combrink, who is involved in risk communication and vaccine analytics with other members of the UFS, we may be able to reduce the severity of the third wave if the variant remains the same and the vaccination roll-out plan is in full effect. It will also help if the correct number of people are vaccinated, the general population adheres to PPE and mitigation strategies, and people practise the appropriate behaviour as indicated in all official COVID-19 communication, including the UFS COVID-19 information page.  

According to Prof Felicity Burt and Dr Sabeehah Vawda, both virology experts in the UFS Division of Virology, the current vaccination programme is aimed at reducing the severity of the disease among health-care workers. Prevention of further waves of infection through vaccination will require sufficient coverage to induce at least 70% herd immunity in the country. Currently, no country has achieved that level of herd immunity through vaccine programmes – this is the long-term goal of vaccination. 

“Irrespective of the government’s vaccination programmes and schedules and a virus that may mutate and perhaps become more virulent, the fundamental ways to protect yourself remain unchanged, namely social distancing, wearing of masks, and regular hand washing. People need to realise that this ‘new normal’ is going to be with us for a while and remains the best defence against all SARS-CoV-2 viruses and even provides protection against other respiratory pathogens.”

Vaccines and mutations

The exact frequency of mutations differs between different types of viruses, but generally, SARS-CoV-2 is known to have a slower ‘mutation rate’ than other RNA viruses because of its built-in ‘proofreading’ enzyme. The true mutation rate of a virus is difficult to measure, as the majority of mutations will be lethal to the virus. Irrespective, very few have actually resulted in clinical impact. 

“This highlights the rather gradual process of mutation, so vaccines should remain effective or at least partially effective in the near future, as they elicit antibodies that target different parts of the virus. Continuous surveillance of SARS-CoV-2 is necessary and ongoing to monitor for changes that may impact vaccines and diagnostic tests,” the experts say.

According to Prof Burt and Dr Vawda, scientists are continuously monitoring the situation to detect if the current vaccines would remain effective and to try to adjust them accordingly. How or when the virus will mutate in a clinically significant way is unknown, so at this point, the current vaccines have been shown to be effective against severe disease and hence have application in reducing significant disease. 

“There remains a lot unknown about the extent of protection and the duration of protection, and it is obviously hoped that the vaccine’s immune response in the human body would be able to provide at least some protection or decrease the possibility of severe disease even against potentially newer variants.”

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept