Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 April 2021 | Story André Damons | Photo Supplied
Keabetswe Modise is graduating cum laude with a Bachelor of Administration Honours degree during the UFS virtual graduation on 19 April.

After repeating Grade 11 three times, a student in the Faculty of Economic and Management Sciences at the University of the Free State (UFS) is graduating cum laude with a Bachelor of Administration Honours degree in April.

Keabetswe Modise, who is graduating on 19 April during the UFS virtual graduation, says she used her earlier failures as motivation to work even harder. 

“I am extremely proud of myself. I chose to win instead of crying over spilled milk. As a black, capable, and independent woman, I told myself that if there is a chance for trauma or depression, there is definitely a chance to succeed and enjoy life. This implies that I can achieve anything that I set my mind to. I now hold my family’s name high in both our community and within our external family,” says a proud Modise.

Modise, a part-time lecturer at the Central University of Technology (CUT) in Welkom, has been accepted to study a Master of Public Policy and Development degree in Japan. Her academic year will commence early in 2022 and will take two years to complete.   

Motivation

“This (academic success) came as a surprise. I never thought that one day I would hold a postgraduate qualification, let alone that such a qualification exists. In high school, I repeated Grade 11 three times. At that time, I was known as the dumbest kid in school and in the community. 

“I was depressed, but I did not know what was going on with me. Therefore, I just wanted to pass my matric and work to survive. During my matric year, I really became more motivated after career orientation. This is when I knew I wanted to experience university life. I also wanted to use the chance to escape the dumb girl concept and come back with a victory to claim back my name. Today I am the most influential girl in my community.”

Making the most of the lockdown

Modise used the COVID-19 pandemic and the lockdown to her advantage, as it gave her the opportunity to not only study online, but to also start a successful fast-food business. 

“The consequences of the pandemic on universities have been to my advantage. I managed to work at home, with limited financial expenses such as transport and printing of documents. Also, my assessments were online. This also gave me the chance to start a fast-food business while tackling academic activities on time. 

“Most importantly, I did not have money for registration, and when the policy changed for late registration due to COVID-19 regulations, it gave me time to make a plan to finance my studies. Fortunately, by August, I received a bursary from the Postgraduate School at the UFS, because the HOD was impressed with my academic record. As much as the effects of COVID-19 were devastating on the lives of people, I managed to achieve my goal,” says Modise. 

Her inspiration 

According to Modise, her parents – who separated when she was very young – inspire her. Says Modise: “I appreciate everything they have done for me. I just want my father to one day address me as Dr Modise, while he and my mother can look back and be proud of the woman I have become.” 

“In this case, I can say that I get inspired by the vision of being applauded by both my mother and father.  Most importantly, I get inspired by the changing philosophy of government management. I admire the impact of globalisation around the world. Today, any academic institution can operate online.” 

Modise’s message to others is that nothing comes easy or without a cost: “It looks like it is impossible, but actually, this is your life. I can motivate someone as much as I can, but if you are not willing to be motivated, nothing can change for you. Also, no one owes anyone anything. This is your journey, drive it.”

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept