Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 April 2021 | Story André Damons | Photo Supplied
Keabetswe Modise is graduating cum laude with a Bachelor of Administration Honours degree during the UFS virtual graduation on 19 April.

After repeating Grade 11 three times, a student in the Faculty of Economic and Management Sciences at the University of the Free State (UFS) is graduating cum laude with a Bachelor of Administration Honours degree in April.

Keabetswe Modise, who is graduating on 19 April during the UFS virtual graduation, says she used her earlier failures as motivation to work even harder. 

“I am extremely proud of myself. I chose to win instead of crying over spilled milk. As a black, capable, and independent woman, I told myself that if there is a chance for trauma or depression, there is definitely a chance to succeed and enjoy life. This implies that I can achieve anything that I set my mind to. I now hold my family’s name high in both our community and within our external family,” says a proud Modise.

Modise, a part-time lecturer at the Central University of Technology (CUT) in Welkom, has been accepted to study a Master of Public Policy and Development degree in Japan. Her academic year will commence early in 2022 and will take two years to complete.   

Motivation

“This (academic success) came as a surprise. I never thought that one day I would hold a postgraduate qualification, let alone that such a qualification exists. In high school, I repeated Grade 11 three times. At that time, I was known as the dumbest kid in school and in the community. 

“I was depressed, but I did not know what was going on with me. Therefore, I just wanted to pass my matric and work to survive. During my matric year, I really became more motivated after career orientation. This is when I knew I wanted to experience university life. I also wanted to use the chance to escape the dumb girl concept and come back with a victory to claim back my name. Today I am the most influential girl in my community.”

Making the most of the lockdown

Modise used the COVID-19 pandemic and the lockdown to her advantage, as it gave her the opportunity to not only study online, but to also start a successful fast-food business. 

“The consequences of the pandemic on universities have been to my advantage. I managed to work at home, with limited financial expenses such as transport and printing of documents. Also, my assessments were online. This also gave me the chance to start a fast-food business while tackling academic activities on time. 

“Most importantly, I did not have money for registration, and when the policy changed for late registration due to COVID-19 regulations, it gave me time to make a plan to finance my studies. Fortunately, by August, I received a bursary from the Postgraduate School at the UFS, because the HOD was impressed with my academic record. As much as the effects of COVID-19 were devastating on the lives of people, I managed to achieve my goal,” says Modise. 

Her inspiration 

According to Modise, her parents – who separated when she was very young – inspire her. Says Modise: “I appreciate everything they have done for me. I just want my father to one day address me as Dr Modise, while he and my mother can look back and be proud of the woman I have become.” 

“In this case, I can say that I get inspired by the vision of being applauded by both my mother and father.  Most importantly, I get inspired by the changing philosophy of government management. I admire the impact of globalisation around the world. Today, any academic institution can operate online.” 

Modise’s message to others is that nothing comes easy or without a cost: “It looks like it is impossible, but actually, this is your life. I can motivate someone as much as I can, but if you are not willing to be motivated, nothing can change for you. Also, no one owes anyone anything. This is your journey, drive it.”

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept