Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 April 2021 | Story André Damons | Photo Supplied
Keabetswe Modise is graduating cum laude with a Bachelor of Administration Honours degree during the UFS virtual graduation on 19 April.

After repeating Grade 11 three times, a student in the Faculty of Economic and Management Sciences at the University of the Free State (UFS) is graduating cum laude with a Bachelor of Administration Honours degree in April.

Keabetswe Modise, who is graduating on 19 April during the UFS virtual graduation, says she used her earlier failures as motivation to work even harder. 

“I am extremely proud of myself. I chose to win instead of crying over spilled milk. As a black, capable, and independent woman, I told myself that if there is a chance for trauma or depression, there is definitely a chance to succeed and enjoy life. This implies that I can achieve anything that I set my mind to. I now hold my family’s name high in both our community and within our external family,” says a proud Modise.

Modise, a part-time lecturer at the Central University of Technology (CUT) in Welkom, has been accepted to study a Master of Public Policy and Development degree in Japan. Her academic year will commence early in 2022 and will take two years to complete.   

Motivation

“This (academic success) came as a surprise. I never thought that one day I would hold a postgraduate qualification, let alone that such a qualification exists. In high school, I repeated Grade 11 three times. At that time, I was known as the dumbest kid in school and in the community. 

“I was depressed, but I did not know what was going on with me. Therefore, I just wanted to pass my matric and work to survive. During my matric year, I really became more motivated after career orientation. This is when I knew I wanted to experience university life. I also wanted to use the chance to escape the dumb girl concept and come back with a victory to claim back my name. Today I am the most influential girl in my community.”

Making the most of the lockdown

Modise used the COVID-19 pandemic and the lockdown to her advantage, as it gave her the opportunity to not only study online, but to also start a successful fast-food business. 

“The consequences of the pandemic on universities have been to my advantage. I managed to work at home, with limited financial expenses such as transport and printing of documents. Also, my assessments were online. This also gave me the chance to start a fast-food business while tackling academic activities on time. 

“Most importantly, I did not have money for registration, and when the policy changed for late registration due to COVID-19 regulations, it gave me time to make a plan to finance my studies. Fortunately, by August, I received a bursary from the Postgraduate School at the UFS, because the HOD was impressed with my academic record. As much as the effects of COVID-19 were devastating on the lives of people, I managed to achieve my goal,” says Modise. 

Her inspiration 

According to Modise, her parents – who separated when she was very young – inspire her. Says Modise: “I appreciate everything they have done for me. I just want my father to one day address me as Dr Modise, while he and my mother can look back and be proud of the woman I have become.” 

“In this case, I can say that I get inspired by the vision of being applauded by both my mother and father.  Most importantly, I get inspired by the changing philosophy of government management. I admire the impact of globalisation around the world. Today, any academic institution can operate online.” 

Modise’s message to others is that nothing comes easy or without a cost: “It looks like it is impossible, but actually, this is your life. I can motivate someone as much as I can, but if you are not willing to be motivated, nothing can change for you. Also, no one owes anyone anything. This is your journey, drive it.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept