Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 April 2021 | Story André Damons | Photo Supplied
Keabetswe Modise is graduating cum laude with a Bachelor of Administration Honours degree during the UFS virtual graduation on 19 April.

After repeating Grade 11 three times, a student in the Faculty of Economic and Management Sciences at the University of the Free State (UFS) is graduating cum laude with a Bachelor of Administration Honours degree in April.

Keabetswe Modise, who is graduating on 19 April during the UFS virtual graduation, says she used her earlier failures as motivation to work even harder. 

“I am extremely proud of myself. I chose to win instead of crying over spilled milk. As a black, capable, and independent woman, I told myself that if there is a chance for trauma or depression, there is definitely a chance to succeed and enjoy life. This implies that I can achieve anything that I set my mind to. I now hold my family’s name high in both our community and within our external family,” says a proud Modise.

Modise, a part-time lecturer at the Central University of Technology (CUT) in Welkom, has been accepted to study a Master of Public Policy and Development degree in Japan. Her academic year will commence early in 2022 and will take two years to complete.   

Motivation

“This (academic success) came as a surprise. I never thought that one day I would hold a postgraduate qualification, let alone that such a qualification exists. In high school, I repeated Grade 11 three times. At that time, I was known as the dumbest kid in school and in the community. 

“I was depressed, but I did not know what was going on with me. Therefore, I just wanted to pass my matric and work to survive. During my matric year, I really became more motivated after career orientation. This is when I knew I wanted to experience university life. I also wanted to use the chance to escape the dumb girl concept and come back with a victory to claim back my name. Today I am the most influential girl in my community.”

Making the most of the lockdown

Modise used the COVID-19 pandemic and the lockdown to her advantage, as it gave her the opportunity to not only study online, but to also start a successful fast-food business. 

“The consequences of the pandemic on universities have been to my advantage. I managed to work at home, with limited financial expenses such as transport and printing of documents. Also, my assessments were online. This also gave me the chance to start a fast-food business while tackling academic activities on time. 

“Most importantly, I did not have money for registration, and when the policy changed for late registration due to COVID-19 regulations, it gave me time to make a plan to finance my studies. Fortunately, by August, I received a bursary from the Postgraduate School at the UFS, because the HOD was impressed with my academic record. As much as the effects of COVID-19 were devastating on the lives of people, I managed to achieve my goal,” says Modise. 

Her inspiration 

According to Modise, her parents – who separated when she was very young – inspire her. Says Modise: “I appreciate everything they have done for me. I just want my father to one day address me as Dr Modise, while he and my mother can look back and be proud of the woman I have become.” 

“In this case, I can say that I get inspired by the vision of being applauded by both my mother and father.  Most importantly, I get inspired by the changing philosophy of government management. I admire the impact of globalisation around the world. Today, any academic institution can operate online.” 

Modise’s message to others is that nothing comes easy or without a cost: “It looks like it is impossible, but actually, this is your life. I can motivate someone as much as I can, but if you are not willing to be motivated, nothing can change for you. Also, no one owes anyone anything. This is your journey, drive it.”

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept