Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 April 2021 | Story Rulanzen Martin | Photo istock
Social media discussions have provided a lens on how people are dealing with and talking about COVID-19. This has given risk communication new insights into online audiences.

The lingering effects of the COVID-19 pandemic on society presented the experts at the University of the Free State (UFS) with an opportunity – to conduct a scientific study by analysing our social media data in order to assist government health communicators to reflect on their communication strategies and, in turn, gain new perspectives from the general social media user (public). 

The study – led by Herkulaas Combrink, a data and medical scientist in the UFS initiative for Digital Futures, and Prof. Katinka de Wet, medical sociologist in both the UFS initiative for Digital Futures and the Department of Sociology at the UFS – uses “real-time snapshots of online interactions as a means to augment more traditional methods of conducting research on a given topic; in this case, responses to COVID-19”, said Combrink. 

The findings and ongoing work of the research project were presented to the Parliamentary Portfolio Committee on Communications. “During this meeting, critical engagement took place around risk communication and areas where we can strengthen this research,” said Combrink. Several international influential risk communicators on the African continent were present. 

Digital science at the forefront 

The opportunity to pursue this study was the result of Herkulaas Combrink’s secondment to the Free State Department of Health (FSDOH), where he identified the need to develop additional analytics for the already existing processes in risk communication in order to assist various communication strategies linked to developments regarding COVID-19 infections.  

Combrink also said “because the analysis of social media data does not normally form part of the traditional toolbox of investigation for this type of work, this novel application serves as an addition to the already existing communication analytics”. This research project will strengthen the level of cooperation between the UFS, other institutions, and the FSDOH to “synergistically strengthen communication strategies in relation to COVID-19”. 

By looking at how new knowledge around COVID-19 is developing the method (of analysing social media data), is to stay abreast of trending and burning issues on open-source social media platforms. “It is important to conduct this work using well-defined scientific methodology to extract, explore, analyse, and report on the data,” Combrink says. 

Given the rapidity with which new knowledge around COVID-19 is developing all over the globe, this method lends itself to staying abreast of emergent and burning issues that are trending on open-source social media sites. 

Variety of stakeholders needed

The magnitude of the research study required the involvement of stakeholders from different institutions. “A variety of stakeholders from different institutions are needed not only to contextualise the data, but also to provide social and technical input to solve the problem,” Combrink said.  

Experts included in the project are Dr Vukosi Marivate from the Department of Computer Science at the University of Pretoria, Dr Ming-Han Mothloung from the Department of Community Health at the UFS and the FSDOH, and Dr Samuel Mokoena, Priscilla Monyobo, Mondli Mvambi, and Elke de Witt from the FSDOH. “Without this core team, the work would not have been contextually relevant,” Combrink said. 

News Archive

UFS boasts with world class research apparatus
2005-10-20

 

 

At the launch of the diffractometer were from the left Prof Steve Basson (Chairperson:  Department of Chemistry at the UFS), Prof Jannie Swarts (Unit for Physical and Macro-molecular Chemistry at the UFS Department of Chemistry), Mr Pari Antalis (from the provider of the apparatus - Bruker SA), Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS), Prof André Roodt (head of the X-ray diffraction unit at the UFS Department of Chemistry) and Prof Teuns Verschoor (Vice-Rector:  Academic Operations at the UFS).

UFS boasts with world class research apparatus
The most advanced single crystal X-ray diffractometer in Africa has been installed in the Department of Chemistry at the University of the Free State (UFS).

“The diffractometer provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, currently synthesized in the Department of Chemistry.  It also includes the area of homogeneous catalysis where new compounds for industrial application are synthesised and characterised and whereby SASOL and even the international petrochemical industry could benefit, especially in the current climate of increased oil prices,” said Prof Andrè Roodt, head of the X-ray diffraction unit at the UFS Department of Chemistry.

The installation of the Bruker Kappa APEX II single crystal diffractometer is part of an innovative programme of the UFS management to continue its competitive research and extend it further internationally.

“The diffractometer is the first milestone of the research funding programme for the Department of Chemistry and we are proud to be the first university in Africa to boast with such advanced apparatus.  We are not standing back for any other university in the world and have already received requests for research agreements from universities such as the University of Cape Town,” said Prof Herman van Schalkwyk, Dean:  Faculty of Natural and Agricultural Sciences at the UFS.

The diffractometer is capable of accurately analysing molecules in crystalline form within a few hours and obtain the precise geometry – that on a sample only the size of a grain of sugar.   It simultaneously gives the exact distance between two atoms, accurate to less than fractions of a billionth of a millimetre.

“It allows us to investigate certain processes in Bloemfontein which has been impossible in the past. We now have a technique locally by which different steps in key chemical reactions can be evaluated much more reliable, even at temperatures as low as minus 170 degrees centigrade,” said Prof Roodt.

A few years ago these analyses would have taken days or even weeks. The Department of Chemistry now has the capability to investigate chemical compounds in Bloemfontein which previously had to be shipped to other, less sophisticate sites in the RSA or overseas (for example Sweden, Russia and Canada) at significant extra costs.

Media release
Issued by:Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
19 October 2005   

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept