Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 April 2021 | Story Rulanzen Martin | Photo istock
Social media discussions have provided a lens on how people are dealing with and talking about COVID-19. This has given risk communication new insights into online audiences.

The lingering effects of the COVID-19 pandemic on society presented the experts at the University of the Free State (UFS) with an opportunity – to conduct a scientific study by analysing our social media data in order to assist government health communicators to reflect on their communication strategies and, in turn, gain new perspectives from the general social media user (public). 

The study – led by Herkulaas Combrink, a data and medical scientist in the UFS initiative for Digital Futures, and Prof. Katinka de Wet, medical sociologist in both the UFS initiative for Digital Futures and the Department of Sociology at the UFS – uses “real-time snapshots of online interactions as a means to augment more traditional methods of conducting research on a given topic; in this case, responses to COVID-19”, said Combrink. 

The findings and ongoing work of the research project were presented to the Parliamentary Portfolio Committee on Communications. “During this meeting, critical engagement took place around risk communication and areas where we can strengthen this research,” said Combrink. Several international influential risk communicators on the African continent were present. 

Digital science at the forefront 

The opportunity to pursue this study was the result of Herkulaas Combrink’s secondment to the Free State Department of Health (FSDOH), where he identified the need to develop additional analytics for the already existing processes in risk communication in order to assist various communication strategies linked to developments regarding COVID-19 infections.  

Combrink also said “because the analysis of social media data does not normally form part of the traditional toolbox of investigation for this type of work, this novel application serves as an addition to the already existing communication analytics”. This research project will strengthen the level of cooperation between the UFS, other institutions, and the FSDOH to “synergistically strengthen communication strategies in relation to COVID-19”. 

By looking at how new knowledge around COVID-19 is developing the method (of analysing social media data), is to stay abreast of trending and burning issues on open-source social media platforms. “It is important to conduct this work using well-defined scientific methodology to extract, explore, analyse, and report on the data,” Combrink says. 

Given the rapidity with which new knowledge around COVID-19 is developing all over the globe, this method lends itself to staying abreast of emergent and burning issues that are trending on open-source social media sites. 

Variety of stakeholders needed

The magnitude of the research study required the involvement of stakeholders from different institutions. “A variety of stakeholders from different institutions are needed not only to contextualise the data, but also to provide social and technical input to solve the problem,” Combrink said.  

Experts included in the project are Dr Vukosi Marivate from the Department of Computer Science at the University of Pretoria, Dr Ming-Han Mothloung from the Department of Community Health at the UFS and the FSDOH, and Dr Samuel Mokoena, Priscilla Monyobo, Mondli Mvambi, and Elke de Witt from the FSDOH. “Without this core team, the work would not have been contextually relevant,” Combrink said. 

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept