Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 April 2021 | Story Rulanzen Martin | Photo istock
Social media discussions have provided a lens on how people are dealing with and talking about COVID-19. This has given risk communication new insights into online audiences.

The lingering effects of the COVID-19 pandemic on society presented the experts at the University of the Free State (UFS) with an opportunity – to conduct a scientific study by analysing our social media data in order to assist government health communicators to reflect on their communication strategies and, in turn, gain new perspectives from the general social media user (public). 

The study – led by Herkulaas Combrink, a data and medical scientist in the UFS initiative for Digital Futures, and Prof. Katinka de Wet, medical sociologist in both the UFS initiative for Digital Futures and the Department of Sociology at the UFS – uses “real-time snapshots of online interactions as a means to augment more traditional methods of conducting research on a given topic; in this case, responses to COVID-19”, said Combrink. 

The findings and ongoing work of the research project were presented to the Parliamentary Portfolio Committee on Communications. “During this meeting, critical engagement took place around risk communication and areas where we can strengthen this research,” said Combrink. Several international influential risk communicators on the African continent were present. 

Digital science at the forefront 

The opportunity to pursue this study was the result of Herkulaas Combrink’s secondment to the Free State Department of Health (FSDOH), where he identified the need to develop additional analytics for the already existing processes in risk communication in order to assist various communication strategies linked to developments regarding COVID-19 infections.  

Combrink also said “because the analysis of social media data does not normally form part of the traditional toolbox of investigation for this type of work, this novel application serves as an addition to the already existing communication analytics”. This research project will strengthen the level of cooperation between the UFS, other institutions, and the FSDOH to “synergistically strengthen communication strategies in relation to COVID-19”. 

By looking at how new knowledge around COVID-19 is developing the method (of analysing social media data), is to stay abreast of trending and burning issues on open-source social media platforms. “It is important to conduct this work using well-defined scientific methodology to extract, explore, analyse, and report on the data,” Combrink says. 

Given the rapidity with which new knowledge around COVID-19 is developing all over the globe, this method lends itself to staying abreast of emergent and burning issues that are trending on open-source social media sites. 

Variety of stakeholders needed

The magnitude of the research study required the involvement of stakeholders from different institutions. “A variety of stakeholders from different institutions are needed not only to contextualise the data, but also to provide social and technical input to solve the problem,” Combrink said.  

Experts included in the project are Dr Vukosi Marivate from the Department of Computer Science at the University of Pretoria, Dr Ming-Han Mothloung from the Department of Community Health at the UFS and the FSDOH, and Dr Samuel Mokoena, Priscilla Monyobo, Mondli Mvambi, and Elke de Witt from the FSDOH. “Without this core team, the work would not have been contextually relevant,” Combrink said. 

News Archive

Einstein's gravitational waves as creative as Bach's music, says UFS physicist
2016-02-19

Description: Gravitational waves  Tags: Gravitational waves

Profile of the gravitational waves of the colliding black holes.

Prof Pieter Meintjes, Affiliated Researcher in the Department of Physics at the University of the Free State, welcomed the work done by the Laser Interferometer Gravitational-Wave Observatory (LIGO) science team.
 
For the first time, researchers from two of the American Ligo centres, in Washington and Louisiana respectively, observed gravitational waves directly, 100 years after Albert Einstein said they existed. "My study field in astrophysics involves relativistic systems. Therefore, Einstein's view of gravity is crucial to me. I consider the theory as the highest form of human creativity - just like the music of JS Bach. Over the past 100 years, the theory has been tested through various experiments and in different ways.
 
“The discovery of gravitational waves was the last hurdle to overcome in making this absolutely unfaltering. I am therefore thrilled by the discovery. It is absolutely astounding to imagine that the equations used to make the predictions about the gravitational-wave emissions when two gravitational whirlpools collide - as discovered on 14 September 2015 by LIGO - are basically Einstein's original equations that were published way back in 1916 - in other words, 100 years ago.
 
“The LIGO detectors have been operational since the early 1990s, but they had to undergo several stages of upgrades before being sensitive enough to make detections. LIGO is currently in its final stage, and is expected to function at optimal sensitivity only within a year or two. To be able to conduct the measurements at this stage is therefore a fantastic achievement, since much more funding will certainly be deposited in the project,” Prof Meintjes says.

Description: Prof Pieter Meintjes Tags: Prof Pieter Meintjes

Prof Pieter Meintjes
Photo: Charl Devenish

The search for gravitational waves by means of the Square Kilometre Array (SKA) is one of the focus points in research by both Prof Meintjes and PhD student, Jacques Maritz. This involves the study of radio signals from pulsars that might show signs of effects by gravitational waves. They are looking for signs of gravitational waves. The gravitational waves discovered and studied in this manner would naturally vary much more slowly than the signal discovered from the two colliding gravitational waves.
 
The discovery will definitely provide renewed impetus to the Square Kilometre Array (SKA) Project to use the dispersion of pulsar signals, and to search for the impact of gravitational waves on signals as they travel through the universe. According to Prof Meintjes, the SKA will definitely contribute fundamentally to the Frontier research, which will provide a good deal of publicity for the UFS and South Africa, if significant contributions are made by local researchers in this field.

Video clip explaining gravitational waves

 

  • The Department of Physics will present a general, non-technical talk concerning the recent detection of gravitational waves by the 2 Laser Interferometer Gravitational Wave Observatories (LIGO):

Wednesday 24 February 2016
11:00-12:00
New lecture auditorium, Department of Physics

 

 

 

 

 

 

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept