Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 August 2021 | Story Evodia Mohonyane

Stand out in the global world of work by signing up for LinkedIn Learning now

Learning and growth at university (and in life) is a journey and a lifelong process. The University of the Free State is committed to your personal and professional development and is now proud to offer LinkedIn Learning to all Kovsie students, free of charge.

Why use LinkedIn Learning?

LinkedIn Learning lets you learn at your own pace. You can select courses relevant to your current or future interests in areas such as entrepreneurship, technology, and leadership. You can also pursue other passions — with courses on financial literacy, social media, even drawing and music theory, you will be able to grow and develop in the areas you care about, both within and outside your degree.

Sign up and start your journey to learning skills that will get you a step closer to enterprising your degree and standing out in a global world of work.

Getting started

You will receive an activation email from the UFS via LinkedIn Learning. Don’t delete it! You must activate your LinkedIn Learning account using this activation email. You will have the option to connect through your personal LinkedIn profile (recommended) or activate your account using your ufs4life email.
  • Once you’re in, browse around for your UFS recommended courses
  • Take a course, learn something new, and apply it in your day-to-day life

Help is available!

If you run into issues with logging in, contact us. For technical issues once you are up and running, you have the option to click for help throughout the system, with access to LinkedIn Learning's FAQs, as well as the ability to connect via email, live chat, or phone.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept