Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 August 2021 | Story Evodia Mohonyane

Stand out in the global world of work by signing up for LinkedIn Learning now

Learning and growth at university (and in life) is a journey and a lifelong process. The University of the Free State is committed to your personal and professional development and is now proud to offer LinkedIn Learning to all Kovsie students, free of charge.

Why use LinkedIn Learning?

LinkedIn Learning lets you learn at your own pace. You can select courses relevant to your current or future interests in areas such as entrepreneurship, technology, and leadership. You can also pursue other passions — with courses on financial literacy, social media, even drawing and music theory, you will be able to grow and develop in the areas you care about, both within and outside your degree.

Sign up and start your journey to learning skills that will get you a step closer to enterprising your degree and standing out in a global world of work.

Getting started

You will receive an activation email from the UFS via LinkedIn Learning. Don’t delete it! You must activate your LinkedIn Learning account using this activation email. You will have the option to connect through your personal LinkedIn profile (recommended) or activate your account using your ufs4life email.
  • Once you’re in, browse around for your UFS recommended courses
  • Take a course, learn something new, and apply it in your day-to-day life

Help is available!

If you run into issues with logging in, contact us. For technical issues once you are up and running, you have the option to click for help throughout the system, with access to LinkedIn Learning's FAQs, as well as the ability to connect via email, live chat, or phone.

News Archive

Student excels at international level with research in Inorganic Chemistry
2015-09-21


Carla Pretorius is currently conducting research in
Inorganic Chemistry at the St Petersburg University,
Russia.

Photo:Supplied

Carla Pretorius completed her PhD in Inorganic Chemistry recently, with a thesis entitled “Structural and Reactivity Study of Rhodium(I) Carbonyl Complexes as Model Nano Assemblies”, and has just received her results. The assessors were very impressed, and she will graduate at the next UFS Summer Graduation in December 2015.

She is currently conducting research in St Petersburg, Russia, by invitation. She is working in the group of Prof Vadim Kukushkin of the St Petersburg University, under a bilateral collaboration agreement between the groups of Prof Kukuskin (SPBU) and Prof André Roodt (Head of the Department of Chemistry at the UFS).

Her research involves the intermetallic rhodium-rhodium interactions for the formation of nano-wires and -plates, with applications in the micro-electronics industry, and potentially for harvesting sun energy. She was one of only three young South African scientists invited to attend the workshop “Hot Topics in Contemporary Crystallography” in Split in Croatia during 2014. More recently, she received the prize for best student poster presentation at the international symposium, Indaba 8 in Skukuza in the Kruger National Park, which was judged by an international panel.

Carla was also one of the few international PhD students invited to present a lecture at the 29th European Crystallographic Meeting (ECM29) in Rovinj, Croatia (23-28 August 2015; more than 1 000 delegates from 51 countries). As a result of this lecture, she has just received an invitation to start a collaborative project with a Polish research group at the European Synchrotron Research Facility (ESRF) in Grenoble, France.

According to Prof Roodt, the ESRF ID09B beam line is the only one of its kind in Europe designed for time-resolved Laue diffraction experiments. It has a time-resolution of up to one tenth of a nanosecond, after activation by a laser pulse 100 times shorter (one tenth of a nanosecond when compared to one second is the equivalent of one second compared to 300 years). The results from these experiments will broaden the knowledge on light-induced transformations of very short processes; for example, as in photochemical reactions associated with sun energy harvesting, and will assist in the development of better materials to capture these.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept