Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 August 2021 | Story ANDRÉ DAMONS | Photo ANDRÉ DAMONS
Dr Osayande Evbuomwan, a Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine, always wanted to specialise in an area of medicine that was novel, innovative, intriguing and involved a lot of opportunities for groundbreaking research

Dr Osayande Evbuomwan, Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine, Faculty of Health Sciences, at the University of the Free State (UFS) always wanted to specialize in an area of medicine that was novel, innovative, intriguing and involved many opportunities for groundbreaking research.

This passionate medical man, who joined the UFS in 2019, is behind his department using Lutetium 177 PSMA (Lu-177 PSMA) therapy to treatment metastatic castrate resistant prostate cancer (MCRPC) – an advanced stage prostate cancer. 
The UFS and the Free State province can now join other South African universities, like the University of Pretoria, University of the Witwatersrand, and other provinces in using this method to treat MCRPC patients. 

Built for this job

Dr Evbuomwan explains nuclear medicine is a medical specialty that involves the use of unsealed sources of radiation in the form of radioisotopes for the diagnosis and treatment of various disease conditions including cancers.
“It’s novelty and opportunity for research and ability to diagnose and treat disease conditions in one specialty attracted me to this field. I always wanted to be a doctor. I see it as a calling. It was also something my mum discovered while I was growing up as a child. In my next life, I would choose to be a medical doctor again,” he says.

“I was built for this job and it is always my joy to have the opportunity to carry out my work. We have been well-trained for this; we support all our skills with prayers. We try to give our patients the very best,” says Dr Evbuomwan, who is originally from Benin City, Edo state, Nigeria. 

After graduating as a nuclear medicine specialist from Wits University, Dr Evbuomwan moved to the City of Roses after a work opportunity opened. He saw it as an opportunity to showcase his talents.

“I have been privileged to receive training in this treatment during my residency training at Wits. I treated a few of these patients during my training and the results were amazing. The University of Pretoria has also been involved with this treatment, with some amazing results that are recognised worldwide. 

“This was enough to convince me to push for our department to also join the powerhouses and offer this treatment to patients who need it. With the influence of a very understanding head of department, Dr Gerrit Engelbrecht, we have been successful in pushing for the commencement of this treatment at our facility,” says Dr Evbuomwan.

Important treatment
According to him, the availability and expertise of Lutetium 177 PSMA (Lu-177 PSMA) therapy to treat MCRPC is very important for the Free State and the UFS, as it is able to offer an option for patients who do not qualify for available conventional treatment and/or who have failed the first line of conventional treatment. 

“In the majority of patients this treatment offers improved quality of life, disease-free progression and improved overall survival. It also alleviates the constant bone pains these patients have to go through daily. To be able to offer this treatment puts the university and the province on the map alongside other top institutions in and outside the country. It also offers opportunity for research,” says Dr Evbuomwan.

He believes with a PET/CT camera for proper staging of these patients with cancer the UFS would be able to expand the treatment of patients suffering from this deadly illness. Currently the university does not possess such a camera and has to use lesser methods in identifying the right patients for this therapy.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept