Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 August 2021 | Story ANDRÉ DAMONS | Photo ANDRÉ DAMONS
Dr Osayande Evbuomwan, a Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine, always wanted to specialise in an area of medicine that was novel, innovative, intriguing and involved a lot of opportunities for groundbreaking research

Dr Osayande Evbuomwan, Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine, Faculty of Health Sciences, at the University of the Free State (UFS) always wanted to specialize in an area of medicine that was novel, innovative, intriguing and involved many opportunities for groundbreaking research.

This passionate medical man, who joined the UFS in 2019, is behind his department using Lutetium 177 PSMA (Lu-177 PSMA) therapy to treatment metastatic castrate resistant prostate cancer (MCRPC) – an advanced stage prostate cancer. 
The UFS and the Free State province can now join other South African universities, like the University of Pretoria, University of the Witwatersrand, and other provinces in using this method to treat MCRPC patients. 

Built for this job

Dr Evbuomwan explains nuclear medicine is a medical specialty that involves the use of unsealed sources of radiation in the form of radioisotopes for the diagnosis and treatment of various disease conditions including cancers.
“It’s novelty and opportunity for research and ability to diagnose and treat disease conditions in one specialty attracted me to this field. I always wanted to be a doctor. I see it as a calling. It was also something my mum discovered while I was growing up as a child. In my next life, I would choose to be a medical doctor again,” he says.

“I was built for this job and it is always my joy to have the opportunity to carry out my work. We have been well-trained for this; we support all our skills with prayers. We try to give our patients the very best,” says Dr Evbuomwan, who is originally from Benin City, Edo state, Nigeria. 

After graduating as a nuclear medicine specialist from Wits University, Dr Evbuomwan moved to the City of Roses after a work opportunity opened. He saw it as an opportunity to showcase his talents.

“I have been privileged to receive training in this treatment during my residency training at Wits. I treated a few of these patients during my training and the results were amazing. The University of Pretoria has also been involved with this treatment, with some amazing results that are recognised worldwide. 

“This was enough to convince me to push for our department to also join the powerhouses and offer this treatment to patients who need it. With the influence of a very understanding head of department, Dr Gerrit Engelbrecht, we have been successful in pushing for the commencement of this treatment at our facility,” says Dr Evbuomwan.

Important treatment
According to him, the availability and expertise of Lutetium 177 PSMA (Lu-177 PSMA) therapy to treat MCRPC is very important for the Free State and the UFS, as it is able to offer an option for patients who do not qualify for available conventional treatment and/or who have failed the first line of conventional treatment. 

“In the majority of patients this treatment offers improved quality of life, disease-free progression and improved overall survival. It also alleviates the constant bone pains these patients have to go through daily. To be able to offer this treatment puts the university and the province on the map alongside other top institutions in and outside the country. It also offers opportunity for research,” says Dr Evbuomwan.

He believes with a PET/CT camera for proper staging of these patients with cancer the UFS would be able to expand the treatment of patients suffering from this deadly illness. Currently the university does not possess such a camera and has to use lesser methods in identifying the right patients for this therapy.

News Archive

UFS professor addresses genetically modified food in South Africa in inaugural lecture
2016-09-23

Description: Chris Viljoen inaugural lecture Tags: Chris Viljoen inaugural lecture

At the inaugural lecture were, from the left front,
Prof Lis Lange, Vice Rector: Academic;
Prof Chris Viljoen; Prof Gert van Zyl,
Dean: Faculty of Health Sciences; back: Prof Marius Coetzee,
Head of Department of Haematology and Cell Biology;
and Dr Lynette van der Merwe, Undergraduate
Programme Director.
Photo: Stephen Collett

The first genetically modified (GM) crops in South Africa were planted in 1998. Eighteen years later, the country is one of the largest producers of GM food in the world. Those in support of genetically modified crops say this process is the only way to feed a rapidly growing world population. But those who criticise GM food describe it as a threat to the environment and safety of the population. Who is right? According to Prof Chris Viljoen of the Department of Haematology and Cell Biology at the University of the Free State, neither position is well-founded.

GM crops play a vital role in food security

While GM crops have an important role to play in increasing food production, the technology is only part of the solution to providing sufficient food for a growing world population. The major genetically modified crops produced in the world include soybean, cotton, maize and canola. However, the authenticity of food labelling and the long-term safety of GM food are issues that consumers are concerned about.

Safety and labelling of GM food important in South Africa
In his inaugural lecture on the subject “Are you really going to eat that?” Prof Viljoen addressed the importance of the safety and labelling of GM food in the country. “In order for food to be sustainable, production needs to be economically and environmentally sustainable. On the other hand, food integrity, including food quality, authenticity and safety need to be ensured,” Prof Viljoen said. 

Labelling of food products for genetic modification was mandatory in South Africa, he went on to say. “It allows consumers the right of choice whether to eat genetically modified foods or not.” The Consumer Protection Act of 2008 requires food ingredients containing more than 5% of GM content to be labelled. 

GMO Testing Facility world leader in food diagnostic testing
In 1999, Prof Viljoen spearheaded research in developing a GM diagnostic testing platform, and in 2003, a commercial diagnostic platform for GM status certification, called the GMO Testing Facility, was founded. The facility is a licensed Eurofins GeneScan laboratory   a world leader in food diagnostic testing   and provides diagnostic detection and quantification of genetically modified organisms (GMOs) in grain and processed foods for the local and international market.

Molecular diagnostic technology the future of food integrity, authenticity and safety
With GM labelling now well-established in South Africa, the next challenge is to establish the use of molecular diagnostic technology to ensure that food integrity, including food authenticity and safety is maintained, said Prof Viljoen.

“To the question ‘Are you really going to eat that?’ the answer is ‘yes’, but let’s continue doing research to make sure that what we eat is safe and authentic.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept