Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 August 2021 | Story ANDRÉ DAMONS | Photo ANDRÉ DAMONS
Dr Osayande Evbuomwan, a Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine, always wanted to specialise in an area of medicine that was novel, innovative, intriguing and involved a lot of opportunities for groundbreaking research

Dr Osayande Evbuomwan, Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine, Faculty of Health Sciences, at the University of the Free State (UFS) always wanted to specialize in an area of medicine that was novel, innovative, intriguing and involved many opportunities for groundbreaking research.

This passionate medical man, who joined the UFS in 2019, is behind his department using Lutetium 177 PSMA (Lu-177 PSMA) therapy to treatment metastatic castrate resistant prostate cancer (MCRPC) – an advanced stage prostate cancer. 
The UFS and the Free State province can now join other South African universities, like the University of Pretoria, University of the Witwatersrand, and other provinces in using this method to treat MCRPC patients. 

Built for this job

Dr Evbuomwan explains nuclear medicine is a medical specialty that involves the use of unsealed sources of radiation in the form of radioisotopes for the diagnosis and treatment of various disease conditions including cancers.
“It’s novelty and opportunity for research and ability to diagnose and treat disease conditions in one specialty attracted me to this field. I always wanted to be a doctor. I see it as a calling. It was also something my mum discovered while I was growing up as a child. In my next life, I would choose to be a medical doctor again,” he says.

“I was built for this job and it is always my joy to have the opportunity to carry out my work. We have been well-trained for this; we support all our skills with prayers. We try to give our patients the very best,” says Dr Evbuomwan, who is originally from Benin City, Edo state, Nigeria. 

After graduating as a nuclear medicine specialist from Wits University, Dr Evbuomwan moved to the City of Roses after a work opportunity opened. He saw it as an opportunity to showcase his talents.

“I have been privileged to receive training in this treatment during my residency training at Wits. I treated a few of these patients during my training and the results were amazing. The University of Pretoria has also been involved with this treatment, with some amazing results that are recognised worldwide. 

“This was enough to convince me to push for our department to also join the powerhouses and offer this treatment to patients who need it. With the influence of a very understanding head of department, Dr Gerrit Engelbrecht, we have been successful in pushing for the commencement of this treatment at our facility,” says Dr Evbuomwan.

Important treatment
According to him, the availability and expertise of Lutetium 177 PSMA (Lu-177 PSMA) therapy to treat MCRPC is very important for the Free State and the UFS, as it is able to offer an option for patients who do not qualify for available conventional treatment and/or who have failed the first line of conventional treatment. 

“In the majority of patients this treatment offers improved quality of life, disease-free progression and improved overall survival. It also alleviates the constant bone pains these patients have to go through daily. To be able to offer this treatment puts the university and the province on the map alongside other top institutions in and outside the country. It also offers opportunity for research,” says Dr Evbuomwan.

He believes with a PET/CT camera for proper staging of these patients with cancer the UFS would be able to expand the treatment of patients suffering from this deadly illness. Currently the university does not possess such a camera and has to use lesser methods in identifying the right patients for this therapy.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept