Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 August 2021 | Story Ruan Bruwer
Louzanne Coetzee at the Paralympics in Tokyo with her two guides, Claus Kempen (left) and Estean Badenhorst. She is one of 34 members in Team South Africa.

For some athletes, the postponement of the Paralympics was a big frustration, but for Louzanne Coetzee it was a ‘blessing in disguise’.

According to the former University of the Free State (UFS) student and current Residence Head of Akasia on the UFS Bloemfontein Campus, she was more than happy to get another 12 months to prepare herself to the very best of her ability. She will be in action at the Tokyo Paralympics in the 1 500 m on Sunday (29 August 2021) and Monday (30 August). On 5 September, she will tackle the marathon. It is her second Paralympics. 

“This is the most exited I have ever been for an event. It has been so long since I was able to compete on a high level. I think it is a blessing in disguise. It allowed me more time to prepare. I’m in a great state and I cannot wait,” she said.

In the 1 500 m, Coetzee will be guided by Estean Badenhorst. In the marathon she will run next to Claus Kempen, with whom she has completed a couple of marathons before.
“They are both very experienced and I’m fortunate to have such a great team with me. When you are running an event like the 1 500 m, you need to fully trust your guide with his decision making.”

“The main focus is the track item. I won’t put too much pressure on myself in the marathon. The prime goal is to gain experience in the longer distance, because that is where I’ll be shifting in the future,” she explained.

The South African 1 500 m record holder in the T11 classification (totally blind) clocked a personal best time of 4:51.65 in 2019. She is the world record holder in the 5 000 m; however, the item does not feature on the Paralympic programme. 

News Archive

UFS researchers are producing various flavour and fragrance compounds
2015-05-27

 

The minty-fresh smell after brushing your teeth, the buttery flavour on your popcorn and your vanilla-scented candles - these are mostly flavour and fragrance compounds produced synthetically in a laboratory and the result of many decades of research.

This research, in the end, is what will be important to reproduce these fragrances synthetically for use in the food and cosmetic industries.

Prof Martie Smit, Academic Head of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, and her colleague Dr Dirk Opperman, currently have a team of postgraduate students working on the production of various flavour and fragrance compounds from cheap and abundantly available natural raw materials. 

Prof Smit explains that most of the flavours and fragrances that we smell every day, originally come from natural compounds produced mainly by plants.

“However, because these compounds are often produced in very low concentrations by plants, many of these compounds are today replaced with synthetically-manufactured versions. In recent times, there is an increasing negative view among consumers of such synthetic flavour and fragrance compounds.”

On the other hand, aroma chemicals produced by biotechnological methods, are defined as natural according to European Union and Food and Drug Administration (USA) legal definitions, provided that the raw materials used are of natural origin.  Additionally, the environmental impact and carbon footprint associated with biotech-produced aroma chemicals are often also smaller than those associated with synthetically-produced compounds or those extracted by traditional methods from agricultural sources.

During the last four years, the team investigated processes for rose fragrance, vanilla flavour, mint and spearmint flavours, as well as butter flavour. They are greatly encouraged by the fact that one of these processes is currently being commercialised by a small South African natural aroma chemicals company. Their research is funded by the Department of Science and Technology and the National Research Foundation through the South African Biocatalysis Initiative, the DST-NRF Centre of Excellence in Catalysis and the Technology Innovation Agency, while the UFS has also made a significant investment in this research.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept