Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 August 2021 | Story Ruan Bruwer
Louzanne Coetzee at the Paralympics in Tokyo with her two guides, Claus Kempen (left) and Estean Badenhorst. She is one of 34 members in Team South Africa.

For some athletes, the postponement of the Paralympics was a big frustration, but for Louzanne Coetzee it was a ‘blessing in disguise’.

According to the former University of the Free State (UFS) student and current Residence Head of Akasia on the UFS Bloemfontein Campus, she was more than happy to get another 12 months to prepare herself to the very best of her ability. She will be in action at the Tokyo Paralympics in the 1 500 m on Sunday (29 August 2021) and Monday (30 August). On 5 September, she will tackle the marathon. It is her second Paralympics. 

“This is the most exited I have ever been for an event. It has been so long since I was able to compete on a high level. I think it is a blessing in disguise. It allowed me more time to prepare. I’m in a great state and I cannot wait,” she said.

In the 1 500 m, Coetzee will be guided by Estean Badenhorst. In the marathon she will run next to Claus Kempen, with whom she has completed a couple of marathons before.
“They are both very experienced and I’m fortunate to have such a great team with me. When you are running an event like the 1 500 m, you need to fully trust your guide with his decision making.”

“The main focus is the track item. I won’t put too much pressure on myself in the marathon. The prime goal is to gain experience in the longer distance, because that is where I’ll be shifting in the future,” she explained.

The South African 1 500 m record holder in the T11 classification (totally blind) clocked a personal best time of 4:51.65 in 2019. She is the world record holder in the 5 000 m; however, the item does not feature on the Paralympic programme. 

News Archive

Student excels at international level with research in Inorganic Chemistry
2015-09-21


Carla Pretorius is currently conducting research in
Inorganic Chemistry at the St Petersburg University,
Russia.

Photo:Supplied

Carla Pretorius completed her PhD in Inorganic Chemistry recently, with a thesis entitled “Structural and Reactivity Study of Rhodium(I) Carbonyl Complexes as Model Nano Assemblies”, and has just received her results. The assessors were very impressed, and she will graduate at the next UFS Summer Graduation in December 2015.

She is currently conducting research in St Petersburg, Russia, by invitation. She is working in the group of Prof Vadim Kukushkin of the St Petersburg University, under a bilateral collaboration agreement between the groups of Prof Kukuskin (SPBU) and Prof André Roodt (Head of the Department of Chemistry at the UFS).

Her research involves the intermetallic rhodium-rhodium interactions for the formation of nano-wires and -plates, with applications in the micro-electronics industry, and potentially for harvesting sun energy. She was one of only three young South African scientists invited to attend the workshop “Hot Topics in Contemporary Crystallography” in Split in Croatia during 2014. More recently, she received the prize for best student poster presentation at the international symposium, Indaba 8 in Skukuza in the Kruger National Park, which was judged by an international panel.

Carla was also one of the few international PhD students invited to present a lecture at the 29th European Crystallographic Meeting (ECM29) in Rovinj, Croatia (23-28 August 2015; more than 1 000 delegates from 51 countries). As a result of this lecture, she has just received an invitation to start a collaborative project with a Polish research group at the European Synchrotron Research Facility (ESRF) in Grenoble, France.

According to Prof Roodt, the ESRF ID09B beam line is the only one of its kind in Europe designed for time-resolved Laue diffraction experiments. It has a time-resolution of up to one tenth of a nanosecond, after activation by a laser pulse 100 times shorter (one tenth of a nanosecond when compared to one second is the equivalent of one second compared to 300 years). The results from these experiments will broaden the knowledge on light-induced transformations of very short processes; for example, as in photochemical reactions associated with sun energy harvesting, and will assist in the development of better materials to capture these.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept