Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 August 2021 | Story Ruan Bruwer
Louzanne Coetzee at the Paralympics in Tokyo with her two guides, Claus Kempen (left) and Estean Badenhorst. She is one of 34 members in Team South Africa.

For some athletes, the postponement of the Paralympics was a big frustration, but for Louzanne Coetzee it was a ‘blessing in disguise’.

According to the former University of the Free State (UFS) student and current Residence Head of Akasia on the UFS Bloemfontein Campus, she was more than happy to get another 12 months to prepare herself to the very best of her ability. She will be in action at the Tokyo Paralympics in the 1 500 m on Sunday (29 August 2021) and Monday (30 August). On 5 September, she will tackle the marathon. It is her second Paralympics. 

“This is the most exited I have ever been for an event. It has been so long since I was able to compete on a high level. I think it is a blessing in disguise. It allowed me more time to prepare. I’m in a great state and I cannot wait,” she said.

In the 1 500 m, Coetzee will be guided by Estean Badenhorst. In the marathon she will run next to Claus Kempen, with whom she has completed a couple of marathons before.
“They are both very experienced and I’m fortunate to have such a great team with me. When you are running an event like the 1 500 m, you need to fully trust your guide with his decision making.”

“The main focus is the track item. I won’t put too much pressure on myself in the marathon. The prime goal is to gain experience in the longer distance, because that is where I’ll be shifting in the future,” she explained.

The South African 1 500 m record holder in the T11 classification (totally blind) clocked a personal best time of 4:51.65 in 2019. She is the world record holder in the 5 000 m; however, the item does not feature on the Paralympic programme. 

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept