Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 August 2021 | Story Leonie Bolleurs | Photo Supplied
Tinus Viljoen (second from the left) is responsible for waste management at the university. Here he is pictured at the new chemical waste facility on the western side of the Bloemfontein Campus. With him, on his left, is Nico Janse van Rensburg, Senior Director, University Estates; Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences; and on the far right is Benedict Mochesela, officer at University Estates.

A new chemical waste facility on the western side of the Bloemfontein Campus started functioning in July 2021 and will enhance the safe storage of hazardous materials on campus.

Since the safety of its staff and students are a key priority for the university, as stipulated in its strategic plan, a facility such as this plays an essential role in reducing any health risks and even the possibility of an explosion.

Tinus Viljoen, a Lecturer in the Department of Genetics, concurs that this facility makes the university a safer place because there are less toxic and flammable waste lying around in the labs. 

Besides his role as lecturer, he is responsible for waste management, including the collection of hazardous waste internally, classifying it, and arranging for it to be collected by accredited waste companies. 

A safer space

Waste previously stored in the Genetics Building is now kept at the new facility. Viljoen is of the opinion that this new space is safer because fewer students and staff have access to the western campus. “The chemical waste tends to smell, and on this part of the campus it is out of the way,” he says.

He also says that it helps to have a central place to store the waste, because of logistical reasons. “It makes the overall waste management easier.”

It is mainly inorganic and organic liquid/solid waste, contaminated glass, contaminated solids (e.g., filter paper and gloves), acid waste, and expired chemicals that are stored at the facility. 

This facility makes the university a safer place because there are less toxic and flammable waste lying around in the labs. – Tinus Viljoen

Adhering to legislation

He explains that he is notified by departments in the Faculty of Natural and Agricultural Sciences when they have waste to collect and that he then collects it on Fridays.

Viljoen continues: “The chemical waste is then classified according to the various waste streams and stored in large 210 l drums. When the drums are full, I contact an accredited hazardous waste company to remove, transport, and dispose of the various waste according to strict legislation, constituting the National Environmental Management Act (Act 107 of 1998), the National Environmental Management: Waste Act, 2008 (Act 59 of 2008), the Hazardous Substances Act (Act 5 of 1973), and the National Road Traffic Act, 93 of 1996 (NRTA).”

“The majority of the waste is transported to a hazardous landfill in Gauteng and the rest are incinerated,” he concludes. 

News Archive

Using sugar to make the world a sweeter place
2017-10-13

Description: Deepback sugar Tags: Sugarcane, Dr Deepack Santchurn, Mauritius Sugar Industry Research Institute (MSIRI), Department of Plant Sciences 

Dr Deepack Santchurn, former PhD student in the
Department of Plant Sciences at the UFS,
and plant breeder in the  Mauritius Sugar Industry
Research Institute, with Prof Maryke Labuschagne, left,
Dr Santchurn’s study leader.
Photo: Charl Devenish



Besides it mainly being used for sugar production, sugarcane has emerged as an important alternative for providing clean renewable energy. Dr Deepack Santchurn, who works in the sugarcane breeding department of the Mauritius Sugar Industry Research Institute (MSIRI), believes if he could contribute towards a more environment-friendly and renewable energy through the use of sugarcane biomass, he would consider himself having made a great leap towards a better world. 

Sugarcane is mostly known and exploited for the sugar in its cane stem. According to Dr Santchurn it is not the only thing the crop does well. “Together with certain grasses, it is the finest living collector of sunlight energy and a producer of biomass in unit time. Sugarcane is now recognised worldwide as a potential renewable and environment-friendly bioenergy crop.” 

Significantly more bioenergy can be produced from sugarcane if the production system is not focused on the production and recovery of sucrose alone but on the maximum use to the total above-ground biomass. Diversification within the sugarcane industry is of paramount importance. 

He has been able to identify a few high biomass varieties that can be exploited industrially. One of the varieties is a commercial type with relatively high sugar and low fibre in the cane stem. Dr Santchurn explains: “Its sucrose content is about 0.5% less than the most cultivated commercial variety in Mauritius. Nevertheless, its sugar yield and above-ground biomass yield surpass those of the commercial varieties by more than 24%. The genetic gains compared to commercial varieties were around +50% for total biomass yield and +100% for fibre yield. Its cultivation is strictly related to bio-energy production and the extracted juice can be used as a feed-stock for ethanol and other high-value products.”

Dr Santchurn received his PhD at the UFS’s Department of Plant Sciences during the Winter Graduation Ceremonies in June this year. His study leader was Prof Maryke Labuschagne from the Department of Plant Sciences. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept