Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 August 2021 | Story Leonie Bolleurs | Photo Supplied
Tinus Viljoen (second from the left) is responsible for waste management at the university. Here he is pictured at the new chemical waste facility on the western side of the Bloemfontein Campus. With him, on his left, is Nico Janse van Rensburg, Senior Director, University Estates; Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences; and on the far right is Benedict Mochesela, officer at University Estates.

A new chemical waste facility on the western side of the Bloemfontein Campus started functioning in July 2021 and will enhance the safe storage of hazardous materials on campus.

Since the safety of its staff and students are a key priority for the university, as stipulated in its strategic plan, a facility such as this plays an essential role in reducing any health risks and even the possibility of an explosion.

Tinus Viljoen, a Lecturer in the Department of Genetics, concurs that this facility makes the university a safer place because there are less toxic and flammable waste lying around in the labs. 

Besides his role as lecturer, he is responsible for waste management, including the collection of hazardous waste internally, classifying it, and arranging for it to be collected by accredited waste companies. 

A safer space

Waste previously stored in the Genetics Building is now kept at the new facility. Viljoen is of the opinion that this new space is safer because fewer students and staff have access to the western campus. “The chemical waste tends to smell, and on this part of the campus it is out of the way,” he says.

He also says that it helps to have a central place to store the waste, because of logistical reasons. “It makes the overall waste management easier.”

It is mainly inorganic and organic liquid/solid waste, contaminated glass, contaminated solids (e.g., filter paper and gloves), acid waste, and expired chemicals that are stored at the facility. 

This facility makes the university a safer place because there are less toxic and flammable waste lying around in the labs. – Tinus Viljoen

Adhering to legislation

He explains that he is notified by departments in the Faculty of Natural and Agricultural Sciences when they have waste to collect and that he then collects it on Fridays.

Viljoen continues: “The chemical waste is then classified according to the various waste streams and stored in large 210 l drums. When the drums are full, I contact an accredited hazardous waste company to remove, transport, and dispose of the various waste according to strict legislation, constituting the National Environmental Management Act (Act 107 of 1998), the National Environmental Management: Waste Act, 2008 (Act 59 of 2008), the Hazardous Substances Act (Act 5 of 1973), and the National Road Traffic Act, 93 of 1996 (NRTA).”

“The majority of the waste is transported to a hazardous landfill in Gauteng and the rest are incinerated,” he concludes. 

News Archive

Well-established root system important for sustainable production in semi-arid grasslands
2015-02-24

Plot layout where production and root studies were done
Photo: Supplied

The importance of a well-established root system for sustainable production in the semi-arid grasslands cannot be over-emphasised.

A study of Prof Hennie Snyman from the Department of Animal and Wildlife and Grassland Sciences at the University of the Free State is of the few studies in which soil-water instead of rainfall has been used to estimate above- and below-ground production of semi-arid grasslands. “In the past, plant ecological studies have concentrated largely on above-ground parts of the grassland ecosystem with less emphasis on root growth. This study is, therefore, one of the few done on root dynamics in drier areas,” said Prof Snyman.

The longevity of grass seeds in the soil seed bank is another aspect that is being investigated at present. This information could provide guidelines in grassland restoration.

“Understanding changes in the hydrological characteristics of grassland ecosystems with degradation is essential when making grassland management decisions in arid and semi-arid areas to ensure sustainable animal production. The impact of grassland degradation on productivity, root production, root/shoot ratios, and water-use efficiency has been quantified for the semi-arid grasslands over the last 35 years. Because of the great impact of sustainable management guidelines on land users, this study will be continuing for many years,” said Prof Snyman.

Water-use efficiency (WUE) is defined as the quantity of above- and/or below-ground plant produced over a given period of time per unit of water evapotranspired. Sampling is done from grassland artificially maintained in three different grassland conditions: good, moderate, and poor.

As much as 86, 89 and 94% of the roots for grasslands in good, moderate and poor conditions respectively occur at a depth of less than 300 mm. Root mass is strongly seasonal with the most active growth taking place during March and April. Root mass appears to be greater than above-ground production for these semi-arid areas, with an increase in roots in relation to above-ground production with grassland degradation. The mean monthly root/shoot ratios for grasslands in good, moderate, and poor conditions are 1.16, 1.11, and 1.37 respectively. Grassland degradation lowered above- and below-ground plant production significantly as well as water-use efficiency. The mean WUE (root production included) was 4.79, 3.54 and 2.47 kg ha -1 mm -1 for grasslands in good, moderate, and poor conditions respectively.

These water-use efficiency observations are among the few that also include root production in their calculations.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept