Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 August 2021 | Story Leonie Bolleurs | Photo Supplied
Tinus Viljoen (second from the left) is responsible for waste management at the university. Here he is pictured at the new chemical waste facility on the western side of the Bloemfontein Campus. With him, on his left, is Nico Janse van Rensburg, Senior Director, University Estates; Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences; and on the far right is Benedict Mochesela, officer at University Estates.

A new chemical waste facility on the western side of the Bloemfontein Campus started functioning in July 2021 and will enhance the safe storage of hazardous materials on campus.

Since the safety of its staff and students are a key priority for the university, as stipulated in its strategic plan, a facility such as this plays an essential role in reducing any health risks and even the possibility of an explosion.

Tinus Viljoen, a Lecturer in the Department of Genetics, concurs that this facility makes the university a safer place because there are less toxic and flammable waste lying around in the labs. 

Besides his role as lecturer, he is responsible for waste management, including the collection of hazardous waste internally, classifying it, and arranging for it to be collected by accredited waste companies. 

A safer space

Waste previously stored in the Genetics Building is now kept at the new facility. Viljoen is of the opinion that this new space is safer because fewer students and staff have access to the western campus. “The chemical waste tends to smell, and on this part of the campus it is out of the way,” he says.

He also says that it helps to have a central place to store the waste, because of logistical reasons. “It makes the overall waste management easier.”

It is mainly inorganic and organic liquid/solid waste, contaminated glass, contaminated solids (e.g., filter paper and gloves), acid waste, and expired chemicals that are stored at the facility. 

This facility makes the university a safer place because there are less toxic and flammable waste lying around in the labs. – Tinus Viljoen

Adhering to legislation

He explains that he is notified by departments in the Faculty of Natural and Agricultural Sciences when they have waste to collect and that he then collects it on Fridays.

Viljoen continues: “The chemical waste is then classified according to the various waste streams and stored in large 210 l drums. When the drums are full, I contact an accredited hazardous waste company to remove, transport, and dispose of the various waste according to strict legislation, constituting the National Environmental Management Act (Act 107 of 1998), the National Environmental Management: Waste Act, 2008 (Act 59 of 2008), the Hazardous Substances Act (Act 5 of 1973), and the National Road Traffic Act, 93 of 1996 (NRTA).”

“The majority of the waste is transported to a hazardous landfill in Gauteng and the rest are incinerated,” he concludes. 

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept