Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 August 2021 | Story André Damons | Photo Anja Aucamp
Prof Felicity Burt from the University of the Free State (UFS) and the National Health Laboratory Services (NHLS) holds an NRF-DST South African Research Chair in Vector-borne and Zoonotic Pathogens Research. She is also an expert on arbovirology in the UFS Division of Virology.

New variants of severe acute respiratory coronavirus 2 (SARS-CoV-2) have the potential to influence the size and duration of waves of infection and may prolong the duration of COVID-19’s stay with us. Despite the development of vaccines and the technology available to adapt vaccines in the future to address the emergence of new variants, it is extremely unlikely that COVID-19 will ever be eradicated.

The emergence of new variants has illustrated the importance of continually monitoring circulating variants for changes in viral proteins associated with cell binding (in other words, influencing entry of the virus into a cell) and immune responses (which would influence vaccine efficacy and reinfections). 

Prof Felicity Burt from the University of the Free State (UFS) and the National Health Laboratory Services (NHLS), who holds an NRF-DST South African Research Chair in Vector-borne and Zoonotic Pathogens Research, says the current vaccines are effective against severe disease, but do not prevent transmission. Hence, complete eradication of the virus is unlikely, as the virus will continue to circulate at low levels in the population even if high levels of vaccine coverage are achieved.  Prof Burt is also an expert on arbovirology in the UFS Division of Virology

“To date, the only pathogen that has been eradicated globally is the smallpox virus. This was achievable because of a highly efficacious vaccine and because smallpox caused a disease that was readily recognisable, enabling rapid isolation of afflicted patients. In contrast, a virus such as SARS-CoV-2 that can cause asymptomatic infections in which the person is unknowingly infected and able to shed and transmit the virus, is probably impossible to eradicate,” explains Prof Burt.  

Development of affordable treatment options remains important 

The current vaccines are, however, able to reduce the severity of the disease until a vaccine is available that prevents complete transmission of SARS-CoV-2; therefore, the development of affordable treatment options remains important. Novel therapeutics, such as an antiviral drug that interrupts replication of the virus, or monoclonal antibodies that neutralise the virus, would go a long way to contribute to the treatment of infections.  

“Currently, monoclonal antibody therapy is available in higher-income countries. Monoclonal antibodies mimic our natural antibody response, targeting specific regions of the virus, neutralising the virus, and stopping it from entering cells. Monoclonal antibodies have been used to treat other viral infections such as Ebola; however, they have significant limitations due to cost, availability, and high specificity, meaning that mutations in emerging variants could influence their efficacy. They are unlikely to be an affordable option in lower-income countries.”

Mutations become problematic

According to Prof Burt, viruses have a propensity to acquire mutations, or changes, in their genetic make-up during replication, and as expected, this virus has changed during the pandemic and will inevitably continue to mutate.

“These mutations become problematic if they influence the way the virus is transmitted between people, or if the disease profile changes and the virus causes a more severe disease, or if the changes result in a virus that is not recognised by the body's immune response.  In other words, the virus is capable of hiding from, or can escape, the immune response that a person has developed as a result of a previous natural infection or from vaccination. 

“If the virus has changed such that an existing immune response does not recognise it, then a person can become reinfected. Hence, changes in the ability to escape immunity are considered to confer an advantage to the virus. Although there are changes in all regions of the viral genes, we are concerned with changes that occur in the gene that codes for the spike protein. This protein is responsible for binding and entry of the virus into cells, hence changes in the spike protein that allow the virus to more readily enter cells are considered to be an advantage to the virus.” 

Variants of interest vs variants of concern

Prof Burt says there is now some evidence suggesting that antibodies produced in response to the Beta variant – the dominant variant during the second wave in South Africa – are less efficient at neutralising the Delta variant of the virus. In addition, there is evidence suggesting that the Delta virus can replicate to higher levels in the body, resulting in a higher viral load. Although the kinetics of each variant are still not completely understood, the combinations of higher viral load, and the potential for reinfections to occur will likely contribute towards a larger wave of infection.

“The World Health Organisation (WHO) and international partners characterise emerging variants as variants of concern (VOC) or variants of interest (VOI). Although there are multiple new variants globally, only a small proportion of these meet the definition. The Lambda variant, initially recognised in South America, is deemed a VOI. This is a level below VOC, indicating that it has mutations that are known or have the potential to affect the characteristics of the virus and that the prevalence is increasing in multiple countries over time. Currently, Lambda is not a concern in SA. In contrast, a VOC has the same characteristics as a VOI, but in addition, has one or more of the following: increased transmissibility or is associated with change in disease severity or clinical presentation, or the public health and social measures are less effective against the variant,” says Prof Burt.  

Vaccines will likely need to be adapted to accommodate future variants 

It is impossible to predict which variants may emerge next, explains Prof Burt. “Fortunately, although the current vaccines may not prevent mild disease, they have all been shown to reduce the incidence of severe disease and fatalities. The technology for adapting vaccines is available – but of course – if a vaccine has to be adapted, it will take some time for that to be available. As this virus is now well established globally and will continue to evolve over the years, it is likely that, in the future, vaccines will be required to be adapted to accommodate circulating variants.”

“Although there is some reduction in vaccine efficacy against the currently circulating variants, there are fortunately high levels of protection against severe disease and hospitalisation in people who have received the single-dose Johnson & Johnson vaccine or both doses of the Pfizer vaccine. In other words, they are fully vaccinated,” says Prof Burt. 

Despite reduced effectiveness and potential for vaccine breakthrough, it is still important for people to be vaccinated, as it reduces viral load and duration of virus shedding. Less viral replication means that the virus has less chance to mutate, with less chance of new variants emerging.   

News Archive

Help to rural women to become entrepreneurs
2006-10-24

Some of the guests who attended the ceremony were, from the left: Mr Donray Malabie (Head of the Alexander Forbes Community Trust), Ms Jemina Mokgosi (one of the ladies from Tabane Village who is participating in the Women in Agriculture project), Dr Limakatso Moorosi (Head: Veterinary Services, Free State Department of Agriculture), Prof Johan Greyling (Head: UFS Department of Animal and Wildlife and Grassland Sciences) and Ms Khoboso Lehloenya (coordinator of the project from UFS Department of Animal and Wildlife and Grassland Sciences). Photo: Leonie Bolleurs\

Alexander Forbes and UFS help rural women to become entrepreneurs
 
Today, the Alexander Forbes Community Trust and the University of the Free State (UFS) joined forces to create an enabling environment for rural women to become players in the private sector.

Three years ago the UFS set up a unique small-scale household egg production project called Women in Agriculture in Thaba ‘Nchu as a pilot project. The project was officially launched today by Mr Donray Malabie, Head of the Alexander Forbes Community Trust.

The aim of the Women in Agriculture Project is to create jobs, provide food security and to help develop rural women into entrepreneurs. A total of 25 women based in Tabane Village in Thaba ‘Nchu are the beneficiaries of the project.

“This is the first project in the Free State the Alexander Forbes Community Trust is involved with.  The project would help rural women acquire the skills they need to run their own egg-production business from their homes,” said Mr Malabie. 

“The ongoing debate on the shortage of skills ignores the fact that people with little or no education at all also need training. This project is special to the Trust as it provides for the creation of sustainable jobs, food security and the transfer of much needed skills all at once, particularly at this level,” he said.

Every woman in the group started with two small mobile cages that housed 12 hens each. The units are low in cost, and made of commercially available welded mesh and a metal frame. Now, each woman has four cages with 48 hens. The group manages to collectively produce 750 eggs daily.

The eggs are currently sold to local businesses, including spaza shops and the women are using the income generated to look after their families and to further develop their business.

The Department of Animal and Wildlife and Grassland Sciences at the UFS identified the project and did the initial research into the feasibility of setting up such a project.

“A demonstration and training unit has been established at the Lengau Agricultural Development Centre and the women attended a short practical training course. Subsidies are provided for feeding, together with all the material and the lay hens necessary for the start of the business,” said Ms Khoboso Lehloenya, coordinator of the project from the Department of Animal and Wildlife and Grassland Sciences at the UFS. 

“The advantage in using lay hens is that they are resistant to diseases and the women will not need electric heating systems for the egg production,” said Ms Lehloenya. 

According to Ms Lehloenya, the women are already benefiting from their egg production businesses.  “Some of them have used the profit to buy school uniforms and tracksuits for their children and others are now able to make a monthly contribution to their household expenses,” said Ms Lehloenya. 
“In South Africa, possibly due to cultural reasons and circumstances, most black people prefer to eat older and tougher chickens, compared to younger soft commercially available broiler chickens. This preference creates a further advantage for the women. At the end of their production cycle, old hens can be sold for a higher price than point-of-lay or young hens. This brings in further money to pay for more hens,” said Ms Lehloenya.

The Alexander Forbes Trust contributed R191 000 towards the project aimed at expanding it to benefit 15 more women.

“We are in the process of recruiting an additional 15 women in Thaba ‘Nchu who will be trained by the Lengau Agricultural Development Centre in order to replicate the model and extend its reach”, said Ms Lehloenya.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl@mail.uovs.ac.za
20 October 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept