Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 August 2021 | Story André Damons | Photo Anja Aucamp
Prof Felicity Burt from the University of the Free State (UFS) and the National Health Laboratory Services (NHLS) holds an NRF-DST South African Research Chair in Vector-borne and Zoonotic Pathogens Research. She is also an expert on arbovirology in the UFS Division of Virology.

New variants of severe acute respiratory coronavirus 2 (SARS-CoV-2) have the potential to influence the size and duration of waves of infection and may prolong the duration of COVID-19’s stay with us. Despite the development of vaccines and the technology available to adapt vaccines in the future to address the emergence of new variants, it is extremely unlikely that COVID-19 will ever be eradicated.

The emergence of new variants has illustrated the importance of continually monitoring circulating variants for changes in viral proteins associated with cell binding (in other words, influencing entry of the virus into a cell) and immune responses (which would influence vaccine efficacy and reinfections). 

Prof Felicity Burt from the University of the Free State (UFS) and the National Health Laboratory Services (NHLS), who holds an NRF-DST South African Research Chair in Vector-borne and Zoonotic Pathogens Research, says the current vaccines are effective against severe disease, but do not prevent transmission. Hence, complete eradication of the virus is unlikely, as the virus will continue to circulate at low levels in the population even if high levels of vaccine coverage are achieved.  Prof Burt is also an expert on arbovirology in the UFS Division of Virology

“To date, the only pathogen that has been eradicated globally is the smallpox virus. This was achievable because of a highly efficacious vaccine and because smallpox caused a disease that was readily recognisable, enabling rapid isolation of afflicted patients. In contrast, a virus such as SARS-CoV-2 that can cause asymptomatic infections in which the person is unknowingly infected and able to shed and transmit the virus, is probably impossible to eradicate,” explains Prof Burt.  

Development of affordable treatment options remains important 

The current vaccines are, however, able to reduce the severity of the disease until a vaccine is available that prevents complete transmission of SARS-CoV-2; therefore, the development of affordable treatment options remains important. Novel therapeutics, such as an antiviral drug that interrupts replication of the virus, or monoclonal antibodies that neutralise the virus, would go a long way to contribute to the treatment of infections.  

“Currently, monoclonal antibody therapy is available in higher-income countries. Monoclonal antibodies mimic our natural antibody response, targeting specific regions of the virus, neutralising the virus, and stopping it from entering cells. Monoclonal antibodies have been used to treat other viral infections such as Ebola; however, they have significant limitations due to cost, availability, and high specificity, meaning that mutations in emerging variants could influence their efficacy. They are unlikely to be an affordable option in lower-income countries.”

Mutations become problematic

According to Prof Burt, viruses have a propensity to acquire mutations, or changes, in their genetic make-up during replication, and as expected, this virus has changed during the pandemic and will inevitably continue to mutate.

“These mutations become problematic if they influence the way the virus is transmitted between people, or if the disease profile changes and the virus causes a more severe disease, or if the changes result in a virus that is not recognised by the body's immune response.  In other words, the virus is capable of hiding from, or can escape, the immune response that a person has developed as a result of a previous natural infection or from vaccination. 

“If the virus has changed such that an existing immune response does not recognise it, then a person can become reinfected. Hence, changes in the ability to escape immunity are considered to confer an advantage to the virus. Although there are changes in all regions of the viral genes, we are concerned with changes that occur in the gene that codes for the spike protein. This protein is responsible for binding and entry of the virus into cells, hence changes in the spike protein that allow the virus to more readily enter cells are considered to be an advantage to the virus.” 

Variants of interest vs variants of concern

Prof Burt says there is now some evidence suggesting that antibodies produced in response to the Beta variant – the dominant variant during the second wave in South Africa – are less efficient at neutralising the Delta variant of the virus. In addition, there is evidence suggesting that the Delta virus can replicate to higher levels in the body, resulting in a higher viral load. Although the kinetics of each variant are still not completely understood, the combinations of higher viral load, and the potential for reinfections to occur will likely contribute towards a larger wave of infection.

“The World Health Organisation (WHO) and international partners characterise emerging variants as variants of concern (VOC) or variants of interest (VOI). Although there are multiple new variants globally, only a small proportion of these meet the definition. The Lambda variant, initially recognised in South America, is deemed a VOI. This is a level below VOC, indicating that it has mutations that are known or have the potential to affect the characteristics of the virus and that the prevalence is increasing in multiple countries over time. Currently, Lambda is not a concern in SA. In contrast, a VOC has the same characteristics as a VOI, but in addition, has one or more of the following: increased transmissibility or is associated with change in disease severity or clinical presentation, or the public health and social measures are less effective against the variant,” says Prof Burt.  

Vaccines will likely need to be adapted to accommodate future variants 

It is impossible to predict which variants may emerge next, explains Prof Burt. “Fortunately, although the current vaccines may not prevent mild disease, they have all been shown to reduce the incidence of severe disease and fatalities. The technology for adapting vaccines is available – but of course – if a vaccine has to be adapted, it will take some time for that to be available. As this virus is now well established globally and will continue to evolve over the years, it is likely that, in the future, vaccines will be required to be adapted to accommodate circulating variants.”

“Although there is some reduction in vaccine efficacy against the currently circulating variants, there are fortunately high levels of protection against severe disease and hospitalisation in people who have received the single-dose Johnson & Johnson vaccine or both doses of the Pfizer vaccine. In other words, they are fully vaccinated,” says Prof Burt. 

Despite reduced effectiveness and potential for vaccine breakthrough, it is still important for people to be vaccinated, as it reduces viral load and duration of virus shedding. Less viral replication means that the virus has less chance to mutate, with less chance of new variants emerging.   

News Archive

UFS congratulates Free State on matric results
2017-01-05

 Description: 002 IBP Matric results Tags: 002 IBP Matric results

With projects like the Internet Broadcast Project and the
Schools Partnership Projects the UFS helps to improve
education at schools in the Free State.
Photo: iStock

The University of the Free State (UFS) congratulates the Free State and its learners on their outstanding performance in the 2016 matric results. The university, who also plays a role in promoting excellence at school level, is proud of the Free State’s achievement as the best-performing province in the country with a 93,2% pass rate, excluding progressed learners.

“On behalf of the university community I would like to congratulate the Free State MEC of Education, Tate Makgoe, who is also a member of the UFS Council, and the Department of Education in the province on this fine achievement. The UFS is proud to be involved in projects that contribute to the success of the province’s learners. These include the Internet Broadcast Project (IBP) and the Schools Partnership Projects (SPP). The projects help to improve the quality of teaching and help learners to overcome severe domestic conditions in rural areas,” says Prof Nicky Morgan, Acting Vice-Chancellor and Rector of the UFS.

Internet Broadcast Project

The UFS IDEAS Lab in the Department of Open and Distance Learning on the UFS South Campus supports learners in 83 schools through the IBP with the help of academic videos. The project is a collaboration between the university and the Department of Education in the province. It includes support for subjects such as Mathematics, Physical Science, Life Science, Economics, Accounting, and Geography.

A purpose-built school appliance, comprising a projector, speakers, and a PC, is set up at each school, where learners receive video lectures from highly-qualified teachers.

During a function held in Bloemfontein on 5 January 2017 to congratulate performing schools in the province, Mr Makgoe made special mention of the IBP and said that part of the success of the province can be attributed to the project. Many of the top performing schools had learners who participated in the project. One of the districts that forms part of the project, the Xhariep District, was announced as the top performing district in the province, and is second in the country.


Schools Partnership Projects

The SPP focuses on teachers in order to have a more sustainable impact, with 69 schools in the Free State and Eastern Cape being part of it.

It makes use of mentors (30) who assist teachers and headmasters with school management, Mathematics, Physical Science, Accounting, and English as language of learning. The project has an annual budget of more than R15 million – all the funds come from sponsors outside the UFS.

Mentors visit schools and share knowledge, extra material, and technology to improve the standard of teaching. The change has been significant. Matric results and Bachelors pass rates have improved dramatically in these schools.

Another aspect is the identification of learners with potential (so-called first-generation students) to go to university. They are assisted through extra classes and in applying for tertiary education and bursaries.

Many of them currently study at the UFS, and also receive mentorship at university.

Dr Peet Venter, SPP Project Manager, said his team is proud to be part of the process of helping the Free State to become the number one province in the country again.

Both the IBP and SPP was started in 2011 and are managed from the university’s South Campus in Bloemfontein.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept